Solution of an inverse scattering problem for the acoustic wave equation in three-dimensional media
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 12, pp. 2073-2085 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A three-dimensional inverse scattering problem for the acoustic wave equation is studied. The task is to determine the density and acoustic impedance of a medium. A necessary and sufficient condition for the unique solvability of this problem is established in the form of an energy conservation law. The interpretation of the solution to the inverse problem and the construction of medium images are discussed.
@article{ZVMMF_2016_56_12_a7,
     author = {A. V. Baev},
     title = {Solution of an inverse scattering problem for the acoustic wave equation in three-dimensional media},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {2073--2085},
     year = {2016},
     volume = {56},
     number = {12},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_12_a7/}
}
TY  - JOUR
AU  - A. V. Baev
TI  - Solution of an inverse scattering problem for the acoustic wave equation in three-dimensional media
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2016
SP  - 2073
EP  - 2085
VL  - 56
IS  - 12
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_12_a7/
LA  - ru
ID  - ZVMMF_2016_56_12_a7
ER  - 
%0 Journal Article
%A A. V. Baev
%T Solution of an inverse scattering problem for the acoustic wave equation in three-dimensional media
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2016
%P 2073-2085
%V 56
%N 12
%U http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_12_a7/
%G ru
%F ZVMMF_2016_56_12_a7
A. V. Baev. Solution of an inverse scattering problem for the acoustic wave equation in three-dimensional media. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 12, pp. 2073-2085. http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_12_a7/

[1] Nikolskii E. V., “O reshenii pryamykh i obratnykh zadach seismiki dlya odnomernoi neodnorodnoi sredy pri normalnom padenii ploskoi volny”, Metodika seismorazvedki, Nauka, M., 1965, 190–205 | Zbl

[2] Blagoveschenskii A. S., “Ob obratnoi zadache teorii rasprostraneniya seismicheskikh voln”, Problemy matem. fiziki, Izd-vo Leningr. un-ta, L., 1966, 68–81 | Zbl

[3] Pariiskii B. S., “Obratnaya zadacha dlya volnovogo uravneniya s vozdeistviem na glubine”, Nekotorye pryamye i obratnye zadachi seismiki, Nauka, M., 1968, 25–40 | Zbl

[4] Romanov V. G., Obratnye zadachi matematicheskoi fiziki, Nauka, M., 1984 | MR

[5] Belishev M. I., Blagoveschenskii A. S., Dinamicheskie obratnye zadachi teorii voln, Izd-vo S.-Peterburgskogo universiteta, S.-Pb., 1999

[6] Kabanikhin S. I., Obratnye i nekorrektnye zadachi, Sib. nauch. izd-vo, Novosibirsk, 2009

[7] Bukhgeim A. L., Uravneniya Volterra i obratnye zadachi, Nauka, Novosibirsk, 1983 | MR

[8] Baev A. V., “O reshenii odnoi obratnoi zadachi dlya volnovogo uravneniya s pomoschyu regulyariziruyuschego algoritma”, Zh. vychisl. matem. i matem. fiz., 25:1 (1985), 140–146 | Zbl

[9] Blagoveschenskii A. S., “O lokalnom metode resheniya nestatsionarnoi obratnoi zadachi dlya neodnorodnoi struny”, Trudy mat. in-ta im. V. A. Steklova, 115, Nauka, L., 1971, 28–38

[10] Baev A. V., “Ob odnom metode resheniya obratnoi zadachi rasseyaniya dlya volnovogo uravneniya”, Zh. vychisl. matem. i matem. fiz., 28:1 (1988), 25–33

[11] Baev A. V., “On local solvability of inverse dissipative scattering problems”, J. Inverse Ill-Posed Problems, 9:4 (2001), 227–247 | DOI | MR

[12] Baev A. V., “O lokalnoi razreshimosti obratnykh zadach rasseyaniya dlya uravneniya Kleina–Gordona i sistemy Diraka”, Matem. zametki, 96:2 (2014), 306–309 | DOI | Zbl

[13] Bukhgeim A. L., Vvedenie v teoriyu obratnykh zadach, Nauka. Sib. otdelenie, Novosibirsk, 1988

[14] Baev A. V., Bushkov S. N., “Chislennoe reshenie obratnoi zadachi dlya volnovogo uravneniya metodom regulyarizovannogo obrascheniya raznostnoi skhemy”, Vestn. Mosk. un-ta. Ser. 15. Vychisl. matem. i kibernetika, 1986, no. 4, 52–54

[15] Baev A. V., Kutsenko N. V., “Solving the inverse generalized problem of vertical seismic profiling”, Comput. Math. and Modeling, 15:1 (2004), 1–18 | DOI | MR

[16] Baev A. V., Kutsenko N. V., “Reshenie zadachi vosstanovleniya koeffitsienta dissipatsii variatsionnym metodom”, Zh. vychisl. matem. i matem. fiz., 46:10 (2006), 1882–1893

[17] Baev A. V., Mel'nikov G. Yu., “Inverse dissipative problems in vertical seismic profiling”, J. Inverse Ill-Posed Problems, 7:3 (1999), 201–220 | DOI | MR | Zbl

[18] Belishev M. I., Kachalov A. P., “Metody teorii granichnogo upravleniya v obratnoi spektralnoi zadache dlya neodnorodnoi struny”, Zapiski nauch. sem. LOMI, 179, no. 19, 1989, 14–22

[19] Belishev M. I., Sheronova T. L., “Metody teorii granichnogo upravleniya v nestatsionarnoi obratnoi zadache dlya neodnorodnoi struny”, Zapiski nauch. sem. LOMI, 186, no. 20, 1990, 37–50

[20] Kabanikhin S. I., Proektsionno-raznostnye metody opredeleniya koeffitsientov giperbolicheskikh uravnenii, Nauka. Sib. otdelenie, Novosibirsk, 1988 | MR

[21] Kabanikhin S. I., “O lineinoi regulyarizatsii mnogomernykh obratnykh zadach dlya giperbolicheskikh uravnenii”, Dokl. RAN, 309:4 (1989), 791–795

[22] Kabanikhin S. I., Shishlenin M. A., “Boundary control and Gel'fand–Levitan–Krein methods in inverse acoustic problem”, J. Ill-Posed Problems, 12:2 (2004), 125–144 | DOI | MR | Zbl

[23] Kabanikhin S. I., Shishlenin M. A., “Numerical algorithm for two-dimensional inverse acoustic problem based on Gel'fand–Levitan–Krein equation”, J. Inverse Ill-Posed Problems, 18:9 (2011), 979–995 | DOI | MR

[24] Baev A. V., “O $t$-lokalnoi razreshimosti obratnykh zadach rasseyaniya v dvumernykh sloistykh sredakh”, Zh. vychisl. matem. i matem. fiz., 55:6 (2015), 1039–1057 | DOI | Zbl

[25] Baev A. V., “Matematicheskoe modelirovanie voln v sloistykh sredakh vblizi kaustiki”, Matem. modelirovanie, 27:12 (2014), 83–102

[26] Trofimov V. L., Milashin V. A., Khaziev F. F. et al., “Prediction of geological features on seismic data of high resolution”, Seismic technology, 2009, no. 4, 49–60

[27] Trofimov V. L., Milashin V. A., Khaziev F. F. et al., “Special processing and interpretation of seismic data in complex geological conditions by high-resolution seismic”, Seismic technology, 2009, no. 3, 36–50