Stability of solutions to extremum problems for the nonlinear convection-diffusion-reaction equation with the Dirichlet condition
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 12, pp. 2042-2053 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The solvability of the boundary value and extremum problems for the convection-diffusion-reaction equation in which the reaction coefficient depends nonlinearly on the concentration of substances is proven. The role of the control in the extremum problem is played by the boundary function in the Dirichlet condition. For a particular reaction coefficient in the extremum problem, the optimality system and estimates of the local stability of its solution to small perturbations of the quality functional and one of specified functions is established.
@article{ZVMMF_2016_56_12_a4,
     author = {R. V. Brizitskii and Zh. Yu. Saritskaya},
     title = {Stability of solutions to extremum problems for the nonlinear convection-diffusion-reaction equation with the {Dirichlet} condition},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {2042--2053},
     year = {2016},
     volume = {56},
     number = {12},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_12_a4/}
}
TY  - JOUR
AU  - R. V. Brizitskii
AU  - Zh. Yu. Saritskaya
TI  - Stability of solutions to extremum problems for the nonlinear convection-diffusion-reaction equation with the Dirichlet condition
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2016
SP  - 2042
EP  - 2053
VL  - 56
IS  - 12
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_12_a4/
LA  - ru
ID  - ZVMMF_2016_56_12_a4
ER  - 
%0 Journal Article
%A R. V. Brizitskii
%A Zh. Yu. Saritskaya
%T Stability of solutions to extremum problems for the nonlinear convection-diffusion-reaction equation with the Dirichlet condition
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2016
%P 2042-2053
%V 56
%N 12
%U http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_12_a4/
%G ru
%F ZVMMF_2016_56_12_a4
R. V. Brizitskii; Zh. Yu. Saritskaya. Stability of solutions to extremum problems for the nonlinear convection-diffusion-reaction equation with the Dirichlet condition. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 12, pp. 2042-2053. http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_12_a4/

[1] Tikhonov A. N., Arsenin V. Ya., Metody resheniya nekorrektnykh zadach, Nauka, M., 1986 | MR

[2] Marchuk G. I., Matematicheskoe modelirovanie v probleme okruzhayuschei sredy, Nauka, M., 1982 | MR

[3] Alifanov O. M., Artyukhin E. A., Rumyantsev S. V., Ekstremalnye metody resheniya nekorrektnykh zadach i ikh prilozheniya k obratnym zadacham teploobmena, Nauka, M., 1988 | MR

[4] Ito K., Kunish K., “Estimation of the convection coefficient in elliptic equations”, Inverse Problems, 14 (1997), 995–1013 | DOI | MR

[5] Agoshkov V. I., Minuk F. P., Rusakov A. S., Zalesny V. B., “Study and solution of identification problems for nonstationary 2D- and 3D-convection-diffusion-reaction”, Russ. J. Numer. Anal. Math. Modelling, 20 (2005), 19–43 | DOI | Zbl

[6] Alekseev G. V., Adomavichus E. A., “Theoretical analysis of inverse extremal problems of admixture diffusion in viscous fluid”, J. Inverse Ill-Posed Probl., 9 (2001), 435–468 | DOI | MR | Zbl

[7] Nguyen P. A., Raymond J.-P., “Control problems for convection-diffusion equations with control localized on manifolds”, ESAIM: Control, Optimisation and Calculus of Variations, 6 (2001), 467–488 | DOI | MR | Zbl

[8] Alekseev G. V., “Obratnye ekstremalnye zadachi dlya statsionarnykh uravnenii teorii massoperenosa”, Zh. vychisl. matem. i matem. fiz., 42:3 (2002), 380–394 | Zbl

[9] Alekseev G. V., “Koeffitsientnye obratnye ekstremalnye zadachi dlya statsionarnykh uravnenii teplomassoperenosa”, Zh. vychisl. matem. i matem. fiz., 47:6 (2007), 1055–1076 | Zbl

[10] Alekseev G. V., Soboleva O. V., Tereshko D. A., “Zadachi identifikatsii dlya statsionarnoi modeli massoperenosa”, Prikl. mekhan. tekhn. fiz., 49:4 (2008), 24–35 | Zbl

[11] Alekseev G. V., Tereshko D. A., Analiz i optimizatsiya v gidrodinamike vyazkoi zhidkosti, Dalnauka, Vladivostok, 2008

[12] Alekseev G. V., Tereshko D. A., “Dvukhparametricheskie ekstremalnye zadachi granichnogo upravleniya dlya statsionarnykh uravnenii teplovoi konvektsii”, Zh. vychisl. matem. i matem. fiz., 51:9 (2011), 1645–1664 | Zbl

[13] Alekseev G. V., Vakhitov I. S., Soboleva O. V., “Otsenki ustoichivosti v zadachakh identifikatsii dlya uravneniya konvektsii-diffuzii-reaktsii”, Zh. vychisl. matem. i matem. fiz., 52:12 (2012), 2190–2205 | Zbl

[14] Kovtanyuk A. E., Chebotarev A. Y., Botkin N. D., Hoffmann K.-H., “Theoretical analysis of an optimal control problem of conductive-convective-radiative heat transfer”, J. Math. Anal. and Appl., 412:1 (2014), 520–528 | DOI | MR | Zbl

[15] Chebotarev A. Yu., “Granichnye ekstremalnye zadachi dinamiki vyazkoi neszhimaemoi zhidkosti”, Sib. matem. zh., 34:5 (1993), 202–213 | Zbl

[16] Alekseev G. V., “Zadachi upravleniya dlya statsionarnykh uravnenii magnitnoi gidrodinamiki”, Dokl. AN, 395:3 (2004), 322–325 | Zbl

[17] Penenko V. V., “Variatsionnye metody usvoeniya dannykh i obratnye zadachi dlya izucheniya atmosfery, okeana i okruzhayuschei sredy”, Sib. zh. vychisl. matem., 12 (2009), 421–434 | Zbl

[18] Dementeva E. V., Karepova E. D., Shaidurov V. V., “Vosstanovlenie granichnoi funktsii po dannym nablyudenii dlya zadachi rasprostraneniya poverkhnostnykh voln v akvatorii s otkrytoi granitsei”, Sib. zh. industr. matem., 16:1 (2013), 10–20 | Zbl

[19] Korotkii A. I., Kovtunov D. A., “Rekonstruktsiya granichnykh rezhimov v obratnoi zadache teplovoi konvektsii vysokovyazkoi zhidkosti”, Tr. IMM, 12, 2006, 88–97

[20] Brizitskii R. V., Saritskaya Zh. Yu., “Kraevaya i ekstremalnaya zadacha dlya nelineinogo uravneniya konvektsii-diffuzii-reaktsii”, Sibirskie elektronnye izvestiya, 12 (2015), 447–456 | Zbl

[21] Alekseev G. V., Brizitskii R. V., Saritskaya Zh. Yu., “Otsenki ustoichivosti reshenii ekstremalnykh zadach dlya nelineinogo uravneniya konvektsii-diffuzii-reaktsii”, Sib. zh. industr. matem., 19:2(66) (2016), 3–16 | DOI

[22] Kovtanyuk A. E., Chebotarev A. Yu., Botkin N. D., Hoffman K.-H., “Unique solvability of a steady-state heat tranfer model”, Commun Nonlinear Sci. Number Simulat., 20 (2015), 776–784 | DOI | MR | Zbl

[23] Kovtanyuk A. E., Chebotarev A. Yu., “Statsionarnaya zadacha slozhnogo teploobmena”, Zh. vychisl. matem. i matem. fiz., 54:4 (2014), 711–719 | DOI | Zbl

[24] Kovtanyuk A. E., Chebotarev A. Yu., “Statsionarnaya zadacha svobodnoi konvektsii s radiatsionnym teploobmenom”, Differents. ur-niya, 50:12 (2014), 1590–1597 | DOI | Zbl

[25] Fursikov A. V., Optimalnoe upravlenie raspredelennymi sistemami. Teoriya i prilozheniya, Nauchnaya kniga, Novosibirsk, 1973

[26] Lions Zh.-L., Nekotorye metody resheniya nelineinykh kraevykh zadach, Mir, M., 1972 | MR

[27] Kufner A., Fuchek S., Nelineinye differentsialnye uravneniya, Nauka, M., 1988