@article{ZVMMF_2016_56_12_a3,
author = {Yu. G. Evtushenko and S. A. Lurie and M. A. Posypkin and Yu. O. Solyaev},
title = {Application of optimization methods for finding equilibrium states of two-dimensional crystals},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {2032--2041},
year = {2016},
volume = {56},
number = {12},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_12_a3/}
}
TY - JOUR AU - Yu. G. Evtushenko AU - S. A. Lurie AU - M. A. Posypkin AU - Yu. O. Solyaev TI - Application of optimization methods for finding equilibrium states of two-dimensional crystals JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2016 SP - 2032 EP - 2041 VL - 56 IS - 12 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_12_a3/ LA - ru ID - ZVMMF_2016_56_12_a3 ER -
%0 Journal Article %A Yu. G. Evtushenko %A S. A. Lurie %A M. A. Posypkin %A Yu. O. Solyaev %T Application of optimization methods for finding equilibrium states of two-dimensional crystals %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2016 %P 2032-2041 %V 56 %N 12 %U http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_12_a3/ %G ru %F ZVMMF_2016_56_12_a3
Yu. G. Evtushenko; S. A. Lurie; M. A. Posypkin; Yu. O. Solyaev. Application of optimization methods for finding equilibrium states of two-dimensional crystals. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 12, pp. 2032-2041. http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_12_a3/
[1] Ferrari A. C. et al., “Science and technology roadmap for graphene, related two-dimensional crystals and hybrid systems”, Nanoscale, 7:11 (2015), 4598–4810 | DOI
[2] Andriotis A. N., Richter E., Menon M., “Prediction of a new graphene like Si 2 BN solid”, Physical Review B, 93:8 (2016), 1413–1414 | DOI
[3] Meyer J. C., Geim A. K., Katsnelson M. I., Novoselov K. S., Booth T. J., Roth S., “The structure of suspended graphene sheets”, Nature, 446:7131 (2007), 60–63 | DOI
[4] Memarian F., Fereidoon A., Ganji M. D., “Graphene Young's modulus: molecular mechanics and DFT treatments”, Superlattices Microstruct., 85 (2015), 348–356 | DOI
[5] Sadeghirad A., Su N., Liu F., “Mechanical modeling of graphene using the three-layer-mesh bridging domain method”, Comput. Methods Appl. Mech. Engng., 294 (2015), 278–298 | DOI | MR
[6] Kiselev S. P., Zhirov E. V., “Chislennoe modelirovanie deformirovaniya i razrusheniya grafena pri odnoosnom rastyazhenii metodom molekulyarnoi dinamiki”, Fiz. mezomekhan., 15:2 (2012), 69–76
[7] Ni Z., Bu H., Zou M., Yi H., Bi K., Chen Y., “Anisotropic mechanical properties of graphene sheets from molecular dynamics”, Phys. B Condens. Matter., 405:5 (2010), 1301–1306 | DOI
[8] Dang K. Q., Simpson J. P., Spearot D. E., “Phase transformation in monolayer molybdenum disulphide (MoS2) under tension predicted by molecular dynamics simulations”, Scr. Mater., 76 (2014), 41–44 | DOI
[9] Tabarraei A., Wang X., “A molecular dynamics study of nanofracture in monolayer boron nitride”, Mater. Sci. Engng. A, 641 (2015), 225–230 | DOI
[10] Seifoori S., Hajabdollahi H., “Impact behavior of single-layered graphene sheets based on analytical model and molecular dynamics simulation”, Appl. Surf. Sci., 351 (2015), 565–572 | DOI
[11] Sfyris D., Sfyris G. I., Galiotis C., “Constitutive modeling of some 2D crystals: Graphene, hexagonal BN, MoS$_2$, WSe$_2$ and NbSe$_2$”, Int. J. Solids Struct., 66 (2014), 98–110 | DOI
[12] Zhang B., Xiao H., Yang G., Liu X., “Finite element modelling of the instability in rapid fracture of grapheme”, Eng. Fract. Mech., 141 (2015), 111–119 | DOI
[13] Lure S. A., Posypkin M. A., Solyaev Yu. O., “Metod identifikatsii masshtabnykh parametrov gradientnoi teorii uprugosti na osnove chislennykh eksperimentov dlya ploskikh kompozitnykh struktur”, Internat. J. of Open Informat. Technol., 3:6 (2015), 1–6
[14] Polyak B. T., Vvedenie v optimizatsiyu, Nauka, M., 1983 | MR
[15] Panteleev A. V., Letova T. A., Metody optimizatsii v primerakh i zadachakh, Vyssh. shkola, M., 2002
[16] Evtushenko Yu. G., “Chislennyi metod poiska globalnogo ekstremuma funktsii (perebor na neravnomernoi setke)”, Zh. vychisl. matem. i matem. fiz., 11:6 (1971), 1390–1403 | Zbl
[17] Evtushenko Y., Posypkin M., “A deterministic approach to global box-constrained optimization”, Optimizat. Letters, 7:4 (2013), 819–829 | DOI | MR | Zbl
[18] Evtushenko Yu. G., Posypkin M. A., “Primenenie metoda neravnomernykh pokrytii dlya globalnoi optimizatsii chastichno tselochislennykh nelineinykh zadach”, Zh. vychisl. matem. i matem. fiz., 51:8 (2011), 1376–1389 | Zbl
[19] Sergeev Ya. D., Kvasov D. E., Diagonalnye metody globalnoi optimizatsii, Fizmatlit, M., 2008
[20] Pinter J. D., Global optimization in action: continuous and Lipschitz optimization: algorithms, implementations and applications, Kluwer, Dordrecht, 2013 | MR
[21] Abgaryan K. K., Posypkin M. A., “Primenenie optimizatsionnykh metodov dlya resheniya zadach parametricheskoi identifikatsii potentsialov mezhatomnogo vzaimodeistviya”, Zh. vychisl. matem. i matem. fiz., 54:12 (2014), 1994–2001 | DOI | Zbl
[22] Tersoff J., “New empirical approach for the structure and energy of covalent systems”, Physical Review B, 37:12 (1988), 6991 | DOI
[23] Mannix A. J., Zhou X.-F., Kiraly B., Wood J. D., Alducin D., Myers B. D., Liu X., Fisher B. L., Santiago U., Guest J. R., Yacaman M. J., Ponce A., Oganov A. R., Hersam M. C., Guisinger N. P., “Synthesis of borophenes: Anisotropic, two-dimensional boron polymorphs”, Science, 350:6267 (2015), 1513–1516 | DOI