On reductibility of degenerate optimization problems to regular operator equations
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 12 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We present an application of the $p$-regularity theory to the analysis of non-regular (irregular, degenerate) nonlinear optimization problems. The $p$-regularity theory, also known as the $p$-factor analysis of nonlinear mappings, was developed during last thirty years. The $p$-factor analysis is based on the construction of the $p$-factor operator which allows us to analyze optimization problems in the degenerate case. We investigate reducibility of a non-regular optimization problem to a regular system of equations which do not depend on the objective function. As an illustration we consider applications of our results to non-regular complementarity problems of mathematical programming and to linear programming problems.
@article{ZVMMF_2016_56_12_a2,
     author = {E. Bednarczuk and A. Tretyakov},
     title = {On reductibility of degenerate optimization problems to regular operator equations},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {2031},
     year = {2016},
     volume = {56},
     number = {12},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_12_a2/}
}
TY  - JOUR
AU  - E. Bednarczuk
AU  - A. Tretyakov
TI  - On reductibility of degenerate optimization problems to regular operator equations
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2016
SP  - 2031
VL  - 56
IS  - 12
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_12_a2/
LA  - en
ID  - ZVMMF_2016_56_12_a2
ER  - 
%0 Journal Article
%A E. Bednarczuk
%A A. Tretyakov
%T On reductibility of degenerate optimization problems to regular operator equations
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2016
%P 2031
%V 56
%N 12
%U http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_12_a2/
%G en
%F ZVMMF_2016_56_12_a2
E. Bednarczuk; A. Tretyakov. On reductibility of degenerate optimization problems to regular operator equations. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 12. http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_12_a2/

[1] E. Bednarczuk, A. Prusinska, A. A. Tret'yakov, “High order stability conditions for degenerate optimization problems: Elements of p-regularity theory”, Nonlinear Anal. Theory Appl., 74 (2011), 836–846 | DOI | MR | Zbl

[2] O. Brezhneva, A. A. Tret'yakov, “On the choice of a method for solving a general system of nonlinear equations”, Comput. Math. Math. Phys., 41:5 (2001), 633–637 | MR | Zbl

[3] O. Brezhneva, A. A. Tret'yakov, New Methods for Solving Nonlinear Problems, Vychisl. Tsentr Ross. Akad. Nauk, M., 2000 (in Russian) | MR | Zbl

[4] O. Brezhneva, A. Tret'yakov, “The p-factor Lagrange method for degenerate nonlinear programming”, Numer. Funct. Anal. Optim., 28:9–10 (2007), 1051–1086 | DOI | MR | Zbl

[5] O. Brezhneva, A. Tret'yakov, “Optimality conditions for degenerate extremum problems with equality constraints”, SIAM J. Control Optim., 42:2 (2003), 729–745 | DOI | MR | Zbl

[6] O. Brezhneva, A. Tret'yakov, J. E. Marsden, “Higher-order implicit function theorems and degenerate nonlinear boundary-value problems”, Commun. Pure Appl. Anal., 7:2 (2008), 1–23 | MR

[7] A. Dmitruk, A. Milutin, N. Osmolovskii, “Lyusternik's theorem and the theory of extremum problems”, Russ. Math. Surv., 35:6 (1980), 11–51 | DOI | MR | Zbl

[8] A. F. Ismailov, A. A. Tret'yakov, Factor Analysis of Nonlinear Mappings, Nauka, M., 1994 (in Russian)

[9] U. Ledzewicz, H. Schatler, “Second-order conditions for extremal problems with nonregular equality constraints”, J. Optim. Theory Appl., 86 (1995), 113–144 | DOI | MR | Zbl

[10] A. D. Joffe, V. M. Tichomirov, Theory of Extremum Problems, North Holland, Amsterdam, 1979

[11] A. Prusinska, A. A. Tret'yakov, “A remark on existence of solutions to nonlinear equations with degenerate mappings”, Set-Valued Variational Anal., 16 (2003), 425–445 | MR

[12] E. Szczepanik, A. Prusinska, A. A. Tret'yakov, “The p-factor method for nonlinear optimization”, Schedae Inf., 21 (2012), 141–157

[13] E. Szczepanik, A. A. Tret'yakov, “Methods for irregular equality-constrained optimization problems”, Nonlinear Anal., 69 (2008), 4241–4251 | DOI | MR | Zbl

[14] A. A. Tret'yakov, J. E. Marsden, “Factor-analysis of nonlinear mappings: p-regularity theory”, Commun. Pure Appl. Anal., 2 (2003), 425–445 | DOI | MR | Zbl