@article{ZVMMF_2016_56_12_a2,
author = {E. Bednarczuk and A. Tretyakov},
title = {On reductibility of degenerate optimization problems to regular operator equations},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {2031},
year = {2016},
volume = {56},
number = {12},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_12_a2/}
}
TY - JOUR AU - E. Bednarczuk AU - A. Tretyakov TI - On reductibility of degenerate optimization problems to regular operator equations JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2016 SP - 2031 VL - 56 IS - 12 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_12_a2/ LA - en ID - ZVMMF_2016_56_12_a2 ER -
%0 Journal Article %A E. Bednarczuk %A A. Tretyakov %T On reductibility of degenerate optimization problems to regular operator equations %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2016 %P 2031 %V 56 %N 12 %U http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_12_a2/ %G en %F ZVMMF_2016_56_12_a2
E. Bednarczuk; A. Tretyakov. On reductibility of degenerate optimization problems to regular operator equations. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 12. http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_12_a2/
[1] E. Bednarczuk, A. Prusinska, A. A. Tret'yakov, “High order stability conditions for degenerate optimization problems: Elements of p-regularity theory”, Nonlinear Anal. Theory Appl., 74 (2011), 836–846 | DOI | MR | Zbl
[2] O. Brezhneva, A. A. Tret'yakov, “On the choice of a method for solving a general system of nonlinear equations”, Comput. Math. Math. Phys., 41:5 (2001), 633–637 | MR | Zbl
[3] O. Brezhneva, A. A. Tret'yakov, New Methods for Solving Nonlinear Problems, Vychisl. Tsentr Ross. Akad. Nauk, M., 2000 (in Russian) | MR | Zbl
[4] O. Brezhneva, A. Tret'yakov, “The p-factor Lagrange method for degenerate nonlinear programming”, Numer. Funct. Anal. Optim., 28:9–10 (2007), 1051–1086 | DOI | MR | Zbl
[5] O. Brezhneva, A. Tret'yakov, “Optimality conditions for degenerate extremum problems with equality constraints”, SIAM J. Control Optim., 42:2 (2003), 729–745 | DOI | MR | Zbl
[6] O. Brezhneva, A. Tret'yakov, J. E. Marsden, “Higher-order implicit function theorems and degenerate nonlinear boundary-value problems”, Commun. Pure Appl. Anal., 7:2 (2008), 1–23 | MR
[7] A. Dmitruk, A. Milutin, N. Osmolovskii, “Lyusternik's theorem and the theory of extremum problems”, Russ. Math. Surv., 35:6 (1980), 11–51 | DOI | MR | Zbl
[8] A. F. Ismailov, A. A. Tret'yakov, Factor Analysis of Nonlinear Mappings, Nauka, M., 1994 (in Russian)
[9] U. Ledzewicz, H. Schatler, “Second-order conditions for extremal problems with nonregular equality constraints”, J. Optim. Theory Appl., 86 (1995), 113–144 | DOI | MR | Zbl
[10] A. D. Joffe, V. M. Tichomirov, Theory of Extremum Problems, North Holland, Amsterdam, 1979
[11] A. Prusinska, A. A. Tret'yakov, “A remark on existence of solutions to nonlinear equations with degenerate mappings”, Set-Valued Variational Anal., 16 (2003), 425–445 | MR
[12] E. Szczepanik, A. Prusinska, A. A. Tret'yakov, “The p-factor method for nonlinear optimization”, Schedae Inf., 21 (2012), 141–157
[13] E. Szczepanik, A. A. Tret'yakov, “Methods for irregular equality-constrained optimization problems”, Nonlinear Anal., 69 (2008), 4241–4251 | DOI | MR | Zbl
[14] A. A. Tret'yakov, J. E. Marsden, “Factor-analysis of nonlinear mappings: p-regularity theory”, Commun. Pure Appl. Anal., 2 (2003), 425–445 | DOI | MR | Zbl