@article{ZVMMF_2016_56_12_a10,
author = {D. V. Sadin},
title = {TVD scheme for stiff problems of wave dynamics of heterogeneous media of nonhyperbolic nonconservative type},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {2098--2109},
year = {2016},
volume = {56},
number = {12},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_12_a10/}
}
TY - JOUR AU - D. V. Sadin TI - TVD scheme for stiff problems of wave dynamics of heterogeneous media of nonhyperbolic nonconservative type JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2016 SP - 2098 EP - 2109 VL - 56 IS - 12 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_12_a10/ LA - ru ID - ZVMMF_2016_56_12_a10 ER -
%0 Journal Article %A D. V. Sadin %T TVD scheme for stiff problems of wave dynamics of heterogeneous media of nonhyperbolic nonconservative type %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2016 %P 2098-2109 %V 56 %N 12 %U http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_12_a10/ %G ru %F ZVMMF_2016_56_12_a10
D. V. Sadin. TVD scheme for stiff problems of wave dynamics of heterogeneous media of nonhyperbolic nonconservative type. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 12, pp. 2098-2109. http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_12_a10/
[1] Nigmatulin R. I., Osnovy mekhaniki geterogennykh sred, Nauka, M., 1987
[2] Baer M., Nunziato J., “A two-phase mixture theory for the deflagration-to detonation transition (DDT) in reactive granular materials”, Int. J. Multiphase Flows, 12 (1986), 861–889 | DOI | Zbl
[3] Saurel R., Abgrall R., “A multiphase Godunov method for compressbile multifluid and multiphase flows”, J. Comput. Phys., 150:2 (1999), 425–467 | DOI | MR | Zbl
[4] Zhilin A. A., Fedorov A. V., “Primenenie skhemy TVD dlya rascheta dvukhfaznykh techenii s razlichnymi skorostyami i davleniyami komponentov”, Matem. modelirovanie, 20:1 (2008), 29–47
[5] Sadin D. V., Guzenkov V. O., Lyubarskii S. D., “Chislennoe issledovanie struktury nestatsionarnoi dvukhfaznoi tonkodispersnoi strui”, Prikl. mekhan. i tekhn. fiz., 46:2 (2005), 91–97 | Zbl
[6] Petitpas F., Franquet E., Saurel R., Le Metayer O., “A relaxation-projection method for compressible flows. Part II: Artificial heat exchanges for multiphase shocks”, J. Comput. Phys., 225:2 (2007), 2214–2248 | DOI | MR | Zbl
[7] Saurel R., Petitpas F., Berry R. A., “Simple and efficient relaxation methods for interfaces separating compressible fluids, cavitating flows and shocks in multiphase mixtures”, J. Comput. Phys., 228:5 (2009), 1678–1712 | DOI | MR | Zbl
[8] Fringer O. B., Armfield S. W., Street R. L., “Reducing numerical diffusion in interfacial gravity wave simulations”, Int. J. Numer. Meth. Fluids, 49 (2005), 301–329 | DOI | MR | Zbl
[9] Hirsch C., Numerical computation of internal and external flows, v. 2, Computational Methods for Inviscid and Viscous Flows, Wiley, New York, 1990 | Zbl
[10] Tropin D. A., Fedorov A. V., “Chislennaya skhema vysokogo poryadka dlya modelirovaniya dinamiki v smesi reagiruyuschikh gazov i inertnykh chastits”, Vychislitelnye tekhnologii, 18:4 (2013), 64–76
[11] Chen G., Levermore C., Liu T., “Hyperbolic conservation laws with stiff relaxation terms and entropy”, Comm. Pure. Appl. Math., 47 (1994), 787–830 | DOI | MR | Zbl
[12] Sadin D. V., “Modifitsirovannyi metod krupnykh chastits dlya rascheta nestatsionarnykh techenii gaza v poristoi srede”, Zh. vychisl. matem. i matem. fiz., 36:10 (1996), 158–164 | Zbl
[13] Sadin D. V., “Problema zhestkosti pri modelirovanii volnovykh techenii geterogennykh sred s trekhtemperaturnoi skhemoi mezhfaznogo teplo- i massoobmena”, Prikl. mekhan. i tekhn. fiz., 43:2 (2002), 136–141 | Zbl
[14] Sadin D. V., “O zhestkosti sistem differentsialnykh uravnenii v chastnykh proizvodnykh, opisyvayuschikh dvizheniya geterogennykh sred”, Matem. modelirovanie, 14:11 (2002), 43–53 | Zbl
[15] Gubaidullin A. A., Ivandaev A. I., Nigmatulin R. I., “Modifitsirovannyi metod krupnykh chastits dlya rascheta nestatsionarnykh volnovykh protsessov v mnogofaznykh sredakh”, Zh. vychisl. matem. i matem. fiz., 17:6 (1977), 1531–1544 | Zbl
[16] Sadin D. V., “Metod rascheta volnovykh geterogennykh techenii s intensivnym mezhfaznym vzaimodeistviem”, Zh. vychisl. matem. i matem. fiz., 38:6 (1998), 1033–1039 | Zbl
[17] Sadin D. V., “Reshenie zhestkikh zadach techenii dvukhfaznykh sred so slozhnoi volnovoi strukturoi”, Fiziko-khimicheskaya kinetika v gazovoi dinamike, 15:4 (2014), 1–17
[18] Sternin L. E., Maslov B. P., Shraiber A. A., Podvysotskii A. M., Dvukhfaznye mono- i polidispersnye techeniya gaza s chastitsami, Mashinostr., M., 1980
[19] Chudnovskii A. F., Teploobmen v dispersnykh sredakh, Gostekhteorizdat, M., 1954
[20] Harten A., “High resolution schemes for hyperbolic conservation laws”, J. Comput. Phys., 49 (1983), 357–393 | DOI | MR | Zbl
[21] Sadin D. V., “O skhodimosti odnogo klassa raznostnykh skhem dlya uravnenii nestatsionarnogo dvizheniya gaza v dispersnoi srede”, Zh. vychisl. matem. i matem. fiz., 38:9 (1998), 1572–1577 | Zbl
[22] Ivanov A. S., Kozlov V. V., Sadin D. V., “Nestatsionarnoe istechenie dvukhfaznoi dispersnoi sredy iz tsilindricheskogo kanala konechnykh razmerov v atmosferu”, Izv. RAN. Mekhan. zhidkosti i gaza, 1996, no. 3, 60–66
[23] Sadin D. V., Osnovy teorii modelirovaniya volnovykh geterogennykh protsessov, Voennyi inzhenerno-kosmicheskii un-t, SPb., 2000
[24] Fletcher K., Vychislitelnye metody v dinamike zhidkostei, V 2-kh tomakh, v. 1, Mir, M., 1991