@article{ZVMMF_2016_56_12_a1,
author = {M. K. Kerimov},
title = {Studies on the zeros of {Bessel} functions and methods for their computation: 3. {Some} new works on monotonicity, convexity, and other properties},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1986--2030},
year = {2016},
volume = {56},
number = {12},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_12_a1/}
}
TY - JOUR AU - M. K. Kerimov TI - Studies on the zeros of Bessel functions and methods for their computation: 3. Some new works on monotonicity, convexity, and other properties JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2016 SP - 1986 EP - 2030 VL - 56 IS - 12 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_12_a1/ LA - ru ID - ZVMMF_2016_56_12_a1 ER -
%0 Journal Article %A M. K. Kerimov %T Studies on the zeros of Bessel functions and methods for their computation: 3. Some new works on monotonicity, convexity, and other properties %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2016 %P 1986-2030 %V 56 %N 12 %U http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_12_a1/ %G ru %F ZVMMF_2016_56_12_a1
M. K. Kerimov. Studies on the zeros of Bessel functions and methods for their computation: 3. Some new works on monotonicity, convexity, and other properties. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 12, pp. 1986-2030. http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_12_a1/
[1] Abramowitz M., Stegun I. N. (eds.), Handbook of mathematical functions, Applied Mathematical Series, 55, 10th edit., National Bureau of Standards, Washington, 1964 ; Dover Publications, Inc., New York, 1972; V. A. Ditkin, L. N. Karmazina (red.), Spravochnik po spetsialnym funktsiyam, Nauka, M., 1979 | MR
[2] Askey R. A., “The q-gamma and q-beta-functions”, Applicable Anal., 8 (1978), 125–141 | DOI | MR | Zbl
[3] Blatt J. M., Butler S. T., “Superfluidity of an ideal Bose–Einstein gas”, Phys. Rev., 100 (1995), 476–480 | DOI
[4] Bocher M., “On certain methods of Sturm and their application to the roots of Bessel's functions”, Bull. Amer. Math. Soc., 3 (1897), 205–213 | DOI | MR | Zbl
[5] Elbert A., “Some inequalities concerning Bessel functions of firs kind”, Studia Sci. Math. Hungarica, 6 (1971), 277–285 | MR
[6] Elbert A., “Concavity of the zeros of Bessel functions”, Studia Sci. Math. Hungarica, 12 (1977), 81–88 | MR | Zbl
[7] Elbert A., Gatteschi L., Laforgia A., “On the concavity of zeros of Bessel functions”, Applicable Analysis, 16:4 (1983), 261–278 | DOI | MR | Zbl
[8] Elbert A., Laforgia A., “On the zeros of derivatives of Bessel functions”, Z. angew. Math. und Phys., 34:6 (1983), 774–786 | DOI | MR | Zbl
[9] Elbert A., Laforgia A., “On the square of the zeros of Bessel functions”, SIAM J. Math. Anal., 15 (1984), 206–212 | DOI | MR | Zbl
[10] Elbert A., Laforgia A., “An asymptotic relation for the zeros of Bessel functions”, J. Math. Anal. and Appl., 98 (1984), 502–511 | DOI | MR | Zbl
[11] Elbert A., Laforgia A., “Further results on the zeros of Bessel functions”, Analysis, 5 (1985), 71–86 | DOI | MR | Zbl
[12] Elbert A., Laforgia A., “On the convexity of the zeros of Bessel functions”, SIAM J. Math. Anal., 16:3 (1985), 614–619 | DOI | MR | Zbl
[13] Elbert A., Laforgia A., “Monotonicity properties of the zeros of Bessel functions”, SIAM J. Math. Anal., 17:6 (1986), 1483–1488 | DOI | MR | Zbl
[14] Elbert A., Laforgia A., “Some concequences of a lower found for the second derivative of the zeros of Bessel functions”, J. Math. Anal. and Appl., 125:1 (1987), 1–5 | DOI | MR | Zbl
[15] Elbert A., Laforgia A., “On the power of the zeros of Bessel functions”, Rendiconti Circolo Mat. Palermo, 36:3 (1987), 507–517 | DOI | MR | Zbl
[16] Elbert A., Laforgia A., “A convexity property of zeros of Bessel functions”, J. Appl. Math. and Phys. (ZAMP), 41:5 (1990), 734–737 | DOI | MR | Zbl
[17] Elbert A., Laforgia A., Lorch L., “Additional monotonicity properties of the zeros of Bessel functions”, Analysis, 11:4 (1991), 293–299 | DOI | MR | Zbl
[18] Elbert A., Siafarikas P. D., “On the square of the first zero of Bessel function $J_{\nu}(z)$”, Canad. Math. Bull., 20:1 (1998), 1–12 | MR
[19] Giordano C., Laforgia A., “Further properties of the zeros of Bessel functions”, Le Matematiche (Catania), 42 (1987), 19–28 | MR | Zbl
[20] Giordano C., Rodono L. G., “Further monotonicity and convexity properties of the zeros of cylinder functions”, J. of Comput. and Appl. Math., 42:2 (1992), 245–251 | DOI | MR | Zbl
[21] Hahn W., “Beitrage zur Theorie der Heineschen Reihen”, Math. Nachrichten, 2 (1949), 340–379 | DOI | MR | Zbl
[22] Hurwitz A., “Ueber die Nullstellen Bessel schen Functionen”, Math. Anal., 33 (1880), 246–266 | DOI | MR
[23] Ifantis E. K., Siafarikas P. D., “A differential equations for the zeros of Bessel functions”, Applicable Anal., 20 (1985), 269–281 | DOI | MR | Zbl
[24] Ifantis E. K., Siafarikas P. D., “Differential inequalities for the positive zeros of Bessel functions”, J. of Comput. and Appl. Math., 30:2 (1990), 139–143 | DOI | MR | Zbl
[25] Ifantis E. K., Siafarikas P. D., “A differential inequality for the positive zeros of Bessel functions”, J. of Comput. and Appl. Math., 44:1 (1992), 115–120 | DOI | MR | Zbl
[26] Ismail M. E. H., “The zeros of basic Bessel functions, the functions $J_{\nu+\alpha x}(x)$ and associated orthogonal polynomials”, J. Math. Anal. and Appl., 86 (1982), 1–19 | DOI | MR | Zbl
[27] Ismail M. E. H., “On zeros of Bessel functions”, Applicable Analysis, 22 (1986), 167–168 | DOI | MR | Zbl
[28] Ismail M. E. H., Muldoon M. E., “On the variation with respect to a parameter of zeros of Bessel and $q$-Bessel functions”, J. Math. Anal. and Appl., 135 (1988), 187–207 | DOI | MR | Zbl
[29] Ismail M. E. H., Muldoon M. E., “Bounds for the small real and purely imaginary zeros of Bessel and related functions”, Methods of Appl. Anal., 2:1 (1995), 1–21 | MR | Zbl
[30] Jackson F. H., “The basic gamma function and elliptic function”, Proc. Royal Soc. London. Serie A, 76 (1905), 127–144 | DOI
[31] Kerimov M. K., “The Rayleigh Function:Theory and Methods for its Calculation”, Comput. Math. and Math. Phys., 39:12 (1999), 1962–2006 | MR | Zbl
[32] Kerimov M. K., “Overview of some results concerning the theory and applications of the Rayleigh special functions”, Comput. Math. and Math. Phys., 48:9 (2008), 1454–1507 | DOI | MR
[33] Kerimov M. K., “Studies on the zeros of Bessel Functions and Methods for their Computation”, Comput. Math. and Math. Phys., 53:9 (2014), 1387–1441 | MR
[34] Kokologiannaki C. G., Muldoon M. E., Siafarikas P. D., “A unimodal property of purely imaginary zeros of Bessel and related functions”, Canad. Math. Bull., 37:3 (1994), 365–373 | DOI | MR | Zbl
[35] Laforgia A., Muldoon M. E., “Inequalities and approximations for zeros of Bessel functions of small order”, SIAM J. Math. Anal., 14:2 (1983), 383–388 | DOI | MR | Zbl
[36] Laforgia A., Muldoon M. E., “Monotonicity and concavity properties of zeros of Bessel functions”, J. Math. Anal. and Appl., 98:2 (1984), 470–477 | DOI | MR | Zbl
[37] Lewis J. T., Muldoon M. E., “Monotonicity and concavity properties of zeros of Bessel functions”, SIAM J. Math. Anal., 8:1 (1977), 171–178 | DOI | MR | Zbl
[38] Lewis J. T., Pule J. V., “The free Boson gas in rotating bucket”, Commun. Math. Phys., 45 (1975), 115–131 | DOI | MR
[39] Lorch L., “Elementary comparison techniques for certain classes of Sturm–Lionville equations”, Proc. International Conference on Differential Equations. Symposia Univ. Uppsaliensis Annum Quingentesimum Celebranis 7 (Uppsala, 1977), Acta Univ. Uppsaliensis, Uppsala, 1977, 125–133 | MR | Zbl
[40] Lorch L., “Turanians and Wronskians for the zeros of Bessel functions”, SIAM J. Math. Anal., 11 (1980), 223–227 | DOI | MR | Zbl
[41] Lorch L., Muldoon M. E., Szego P., “Some monotonicity properties of Bessel functions”, SIAM J. Math. Anal., 4 (1973), 385–392 | DOI | MR | Zbl
[42] Lorch L., Szego P., “Higher monotonicity properties of certain Sturm–Lionville functions”, Acta Math., 109 (1963), 53–73 | DOI | MR
[43] Lorch L., Szego P., “Higher monotonicity properties of certain Sturm–Liouoille functions. II”, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. and Phys., 11 (1963), 455–457 | MR | Zbl
[44] Lorch L., Szego P., “On the zeros of derivatives of Bessel functions”, SIAM J. Math. Anal., 19:6 (1988), 1450–1454 | DOI | MR | Zbl
[45] Olver F. W. J. (ed.), Bessel Functions, v. III, Zeros and associated values, Cambridge University Press, Cambridge, 1960 ; K. A. Karpov (red.), Tablitsy nulei funktsii Besselya, Perev. s angl. E. F. Chistovoi, Biblioteka matem. tablits, 44, Izd-vo VTs AN SSSR, M., 1967 | MR | Zbl
[46] Olver F. W. J., Asymptotics and Special Functions, Academic Press, New York, 1974 ; Olver F., Asimptotika i spetsialnye funktsii, Perev. s angl. Yu. A. Brychkova, ed. A. P. Prudnikov, Nauka, M., 1990 | MR | MR
[47] Piessens R., “A series expansion for the first positive zero of Bessel function”, Math. of Comput., 42 (1984), 195–197 | DOI | MR | Zbl
[48] Putterman S. J., Kas M., Uhlenbeck G. E., “Possible origin of the quantized vortices in He. II”, Phys. Rev. Letters, 29 (1972), 546–549 | DOI
[49] Ronveaux R., Monsiaux A., “A prior bound on the first zeros of some special functions”, Ann. Soc. Sci. Bruxelles. Serie II, 88 (1974), 169–175 | MR | Zbl
[50] Shohat J. A., Tamarkin J. D., The problem of Moments, Math. Surveys, 1, rev. edit., American Math. Soc., Providence, RI, 1950 | MR | Zbl
[51] Spigler R., “Alcuni risultati sugli zeri delle funzioni cilindriche e delle loro derivate”, Rendiconti Semin. Mat. Universita e Politechnica. Torino, 38:1 (1980), 67–85 | Zbl
[52] Tricomi F. G., “Sulle funzioni di Bessel di ordine e argomento pressoche uguali”, Atti Accad. Sci. Torino. Cl. Sci. Fis. Mat. Natur., 83 (1949), 3–20 | MR | Zbl
[53] Sturm J. C. F., “Sur les equations differentielles linearies du second order”, J. de Math., 1 (1836), 106–186
[54] Watson G. N., A treatise of the theory of Bessel functions, 2nd Edit, Cambridge University Press, Cambridge, 1944 ; G. N. Vatson, Teoriya besselevykh funktsii, Perev. s angl. V. S. Bermana, v. I, II, Izd-vo inostr. lit., M., 1949 | MR | Zbl