Generation of Delaunay meshes in implicit domains with edge sharpening
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 11, pp. 1931-1948 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A variational algorithm for the construction of 3D Delaunay meshes in implicit domains with a nonsmooth boundary is proposed. The algorithm is based on the self-organization of an elastic network in which each Delaunay edge is interpreted as an elastic strut. The elastic potential is constructed as a combination of the repulsion potential and the sharpening potential. The sharpening potential is applied only on the boundary and is used to minimize the deviation of the outward normals to the boundary faces from the direction of the gradient of the implicit function. Numerical experiments showed that in the case when the implicit function specifying the domain is considerably different from the signed distance function, the use of the sharpening potential proposed by Belyaev and Ohtake in 2002 leads to the mesh instability. A stable version of the sharpening potential is proposed. The numerical experiments showed that acceptable Delaunay meshes for complex shaped domains with sharp curved boundary edges can be constructed.
@article{ZVMMF_2016_56_11_a6,
     author = {A. I. Belokrys-Fedotov and V. A. Garanzha and L. N. Kudryavtseva},
     title = {Generation of {Delaunay} meshes in implicit domains with edge sharpening},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1931--1948},
     year = {2016},
     volume = {56},
     number = {11},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_11_a6/}
}
TY  - JOUR
AU  - A. I. Belokrys-Fedotov
AU  - V. A. Garanzha
AU  - L. N. Kudryavtseva
TI  - Generation of Delaunay meshes in implicit domains with edge sharpening
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2016
SP  - 1931
EP  - 1948
VL  - 56
IS  - 11
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_11_a6/
LA  - ru
ID  - ZVMMF_2016_56_11_a6
ER  - 
%0 Journal Article
%A A. I. Belokrys-Fedotov
%A V. A. Garanzha
%A L. N. Kudryavtseva
%T Generation of Delaunay meshes in implicit domains with edge sharpening
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2016
%P 1931-1948
%V 56
%N 11
%U http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_11_a6/
%G ru
%F ZVMMF_2016_56_11_a6
A. I. Belokrys-Fedotov; V. A. Garanzha; L. N. Kudryavtseva. Generation of Delaunay meshes in implicit domains with edge sharpening. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 11, pp. 1931-1948. http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_11_a6/

[1] Rvachev V. L., Teoriya $R$-funktsii i nekotorye ee prilozheniya, Nauk. dumka, Kiev, 1982 | MR | Zbl

[2] Labelle F., Shewchuk J. R., “Isosurface stuffing: fast tetrahedral meshes with good dihedral angles”, ACM Trans. Graphics, 26:3, Special Issue on the Proc. of ACM SIGGRAPH 2007 (2007), 57:1–57:10 | DOI

[3] Boissonat J.-D., Cohen-Steiner D., Mourrain B. et al., “Meshing of surfaces”, Effective Comput. Geometry for Curves and Surfaces, 2007, 181–230

[4] Tournois J., Wormser C., Alliez P., Desbrun M., “Interleaving Delaunay refinement and optimization for practical isotropic tetrahedron mesh generation”, ACM Trans. Graphics, 28:3 (2009), 75:1–75:9 | DOI

[5] Kofanov A. V., Liseikin V. D., “Postroenie setok dlya konfiguratsii, zadannykh diskretno”, Zh. vychisl. matem. i matem. fiz., 53:6 (2013), 938–945 | DOI | MR | Zbl

[6] Persson P.-O., Strang G., “A simple mesh generator in MATLAB”, SIAM Rev., 46:2 (2004), 329–345 | DOI | MR | Zbl

[7] Belousova L. N., Garanzha V. A., “Postroenie setok Delone v neyavno zadannykh oblastyakh s negladkoi granitsei”, Sovrem. probl. fundamentalnykh i prikl. nauk VII, Tr. 51-i nauchnoi konferentsii, v. 2, Upravlenie i prikl. matematika, 2008, 98–101

[8] Garanzha V. A., Kudryavtseva L. N., “Postroenie trekhmernykh setok Delone po slabostrukturirovannym i protivorechivym dannym”, Zh. vychisl. matem. i matem. fiz., 52:3 (2012), 499–520 | MR | Zbl

[9] Ohtake Y., Belyaev A., “Dual/primal mesh optimization for polygonized implicit surfaces”, Proc. of the 7th ACM Symposium on Solid Modeling and Applications, SMA'02, ACM, New York, 2002, 171–178

[10] Schaeffer S., Ju T., Warren J., “Manifold dual contouring”, IEEE Transactions on visualization and computer graphics, 13:3 (2007), 610–619 | DOI

[11] Frey J. L., George P. L., Mesh generation: applications to finite elements, Herm'es, Paris, 2000 | MR

[12] George P. L., Saltel E., ““Ultimate” robustness in meshing an arbitrary polyhedron”, Int. J. Numer. Meth. Engrg., 58 (2003), 1061–1089 | DOI | MR | Zbl

[13] Danilov A. A., “Unstructured tetrahedral mesh generation technology”, Zh. vychisl. matem. i matem. fiz., 50:1 (2010), 146–163 | MR | Zbl

[14] Liseikin V. D., Grid generation methods, 2nd Ed., Springer-Verlag, Berlin–Heidelberg–New York, 2010 | MR | Zbl

[15] Orenstein J. A., “Multidimensional tries used for associative data searching”, Inform. Proc. Lett., 14:4 (1982), 150–157 | DOI

[16] Samet H., The design and analysis of spatial data structures, Addison-Wesley, Reading, 1990

[17] Garanzha V. A., Kudryavtseva L. N., Utyzhnikov S. V., “Untangling and optimization of spatial meshes”, J. Comput. and Appl. Math., 269, October (2014), 24–41 | DOI | MR | Zbl