Convergence of a family of solutions to a Fujita-type equation in domains with cavities
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 11, pp. 1902-1930 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The Dirichlet problem for a Fujita-type equation, i.e., a second-order quasilinear uniformly elliptic equation is considered in domains $\Omega_\varepsilon$ with spherical or cylindrical cavities of characteristic size $\varepsilon$. The form of the function in the condition on the cavities' boundaries depends on $\varepsilon$. For $\varepsilon$ tending to zero and the number of cavities increasing simultaneously, sufficient conditions are established for the convergence of the family of solutions $\{u_\varepsilon(x)\}$ of this problem to the solution $u(x)$ of a similar problem in the domain $\Omega$ with no cavities with the same boundary conditions imposed on the common part of the boundaries $\partial\Omega$ and $\partial\Omega_\varepsilon$. Convergence rate estimates are given.
@article{ZVMMF_2016_56_11_a5,
     author = {S. V. Pikulin},
     title = {Convergence of a family of solutions to a {Fujita-type} equation in domains with cavities},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1902--1930},
     year = {2016},
     volume = {56},
     number = {11},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_11_a5/}
}
TY  - JOUR
AU  - S. V. Pikulin
TI  - Convergence of a family of solutions to a Fujita-type equation in domains with cavities
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2016
SP  - 1902
EP  - 1930
VL  - 56
IS  - 11
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_11_a5/
LA  - ru
ID  - ZVMMF_2016_56_11_a5
ER  - 
%0 Journal Article
%A S. V. Pikulin
%T Convergence of a family of solutions to a Fujita-type equation in domains with cavities
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2016
%P 1902-1930
%V 56
%N 11
%U http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_11_a5/
%G ru
%F ZVMMF_2016_56_11_a5
S. V. Pikulin. Convergence of a family of solutions to a Fujita-type equation in domains with cavities. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 11, pp. 1902-1930. http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_11_a5/

[1] Keller J. B., “On solutions of $\Delta u = f(u)$”, Comm. Pure Appl. Math., 10:4 (1957), 503–510 | DOI | MR | Zbl

[2] Osserman R., “On the inequality $\Delta u\geqslant f(u)$”, Pacific J. Math., 7:4 (1957), 1641–1647 | DOI | MR | Zbl

[3] Pikulin S. V., “O skhodimosti reshenii statsionarnogo uravneniya tipa Fudzhity v oblasti s sharovoi polostyu”, Nauchn. vedomosti Belgorodskogo gos. un-ta. Matematika. Fizika, 19(162):32 (2013), 120–129 | MR | Zbl

[4] Sanches-Palensiya E., Neodnorodnye sredy i teoriya kolebanii, Mir, M., 1984

[5] Bakhvalov N. S., Panasenko G. P., Osrednenie protsessov v periodicheskikh sredakh, Nauka, M., 1984

[6] Marchenko V. A., Khruslov E. Ya., Kraevye zadachi v oblastyakh s melkozernistoi granitsei, Nauk. dumka, Kiev, 1974

[7] Oleinik O. A., Iosif'yan G. A., Shamaev A. S., Matematicheskie zadachi teorii silno neodnorodnykh uprugikh sred, Izd-vo MGU, M., 1990

[8] Zhikov V. V., Kozlov S. M., Oleinik O. A., Usrednenie differentsialnykh operatorov, Fizmatlit, M., 1993

[9] Fujita H., “On the blowing up of solution of the Cauchy problem for $u_t=\Delta u+u^{1+\alpha}$”, J. Fac. Sci. Univ. Tokyo Sec. I, 13 (1966), 109–124 | MR | Zbl

[10] Tuvaev M. V., “Usrednenie reshenii ellipticheskogo uravneniya s nelineinym pogloscheniem v perforirovannoi oblasti”, Differents. ur-niya, 35:6 (1999), 846–847

[11] Matevosyan O. A., Pikulin S. V., “Ob usrednenii slabonelineinykh divergentnykh ellipticheskikh operatorov v perforirovannom kube”, Matem. zametki, 68:3 (2000), 390–398 | DOI | MR | Zbl

[12] Matevosyan O. A., Pikulin S. V., “Ob usrednenii polulineinykh ellipticheskikh operatorov v perforirovannykh oblastyakh”, Matem. sbornik, 193:3 (2002), 101–114 | DOI | MR | Zbl

[13] Pikulin S. V., “Behavior of solutions of semilinear elliptic equations in domains with complicated boundary”, Russian J. Math. Physics, 19:3 (2012), 401–404 | DOI | MR | Zbl

[14] Matevosyan O. A., Filimonova I. V., “Ob usrednenii polulineinykh parabolicheskikh operatorov v perforirovannom tsilindre”, Matem. zametki, 78:3 (2005), 396–408 | DOI | MR | Zbl

[15] Matevosyan O. A., Filimonova I. V., “Ob usrednenii slabo nelineinykh parabolicheskikh operatorov v perforirovannom tsilindre”, Izv. vuzov, 2005, no. 9(520), 29–37

[16] Kondratev V. A., Landis E. M., “O kachestvennykh svoistvakh reshenii odnogo nelineinogo uravneniya vtorogo poryadka”, Matem. sbornik, 135(177):3 (1988), 346–360 | Zbl

[17] Littmann W., Stampacchia G., Weinberger H. F., “Regular points for elliptic equations with discontinuous coefficients”, Ann. Scuola Norm. Sup. Pisa (3), 17:1–2 (1963), 43–77 | MR

[18] Veron L., “Singular solutions of some nonlinear elliptic equations”, Nonlinear Analysis Theory, Methods and Appl., 5:3 (1981), 225–242 | DOI | MR | Zbl

[19] Vasquez J. L., Veron L., “Removabale singularities of strongly nonlinear elliptic equations”, Manuscripta Math., 33 (1980/81), 129–144 | DOI | MR

[20] Vasquez J. L., Veron L., “Isolated singularities of some semilinear elliptic equations”, J. Diff. Equations, 60 (1985), 301–322 | DOI | MR

[21] Tuvaev M. V., “Ustranimye osobye mnozhestva dlya uravnenii vida $\sum\frac{\partial}{\partial x_i}a_{ij}(x)\frac{\partial u}{\partial x_j}=f(x, u, \nabla u)$”, Matem. zametki, 52:3 (1992), 146–153 | MR | Zbl

[22] Gilbarg D., Trudinger N., Ellipticheskie uravneniya s chastnymi proizvodnymi vtorogo poryadka, Nauka, M., 1989

[23] Adams R., Sobolev spaces, Academic Press, New York, 1975 | MR | Zbl

[24] Stein I. M., Singulyarnye integraly i differentsialnye svoistva funktsii, Mir, M., 1973

[25] De Giorgi E., “Sulla differenziabilita e l'analiticità delle estremali degli integrali multipli regolari”, Memorie della Accademia delle Scienze di Torino. Classe di Scienze Fisiche, Matematicahe e Naturali (III), 125:3 (1957), 25–43 | MR

[26] Moser J., “A new proof of De Giorgi's theorem concerning the regularity problem for elliptic differential equations”, Comm. Pure and Appl. Math., 13 (1960), 457–468 | DOI | MR | Zbl

[27] Ladyzhenskaya O. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1973 | MR

[28] Dubinskii Yu. A., “Nelineinye ellipticheskie i parabolicheskie uravneniya”, Itogi nauki i tekhn. Ser. Sovrem. probl. matem., 9, VINITI, 1976, 5–130 | Zbl

[29] Kolmogorov A. N., Fomin S. V., Elementy teorii funktsii i funktsionalnogo analiza, Fizmatlit, M., 2006

[30] Rellich F., “Ein Satz uber mittlere Konvergenz”, Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse, 1930, 30–35 | Zbl

[31] Kondrashov V. I., “O nekotorykh svoistvakh funktsii iz prostranstv $L^p$”, Dokl. AN SSSR, 48 (1945), 563–566

[32] Skrypnik I. V., Metody issledovaniya nelineinykh ellipticheskikh granichnykh zadach, Nauka, M., 1990 | MR

[33] Natanson I. P., Teoriya funktsii veschestvennogo peremennogo, Nauka, M., 1974

[34] Kondratev V. A., Landis E. M., “Kachestvennaya teoriya lineinykh differentsialnykh uravnenii v chastnykh proizvodnykh vtorogo poryadka”, Differentsialnye uravneniya s chastnymi proizvodnymi — 3, Itogi nauki i tekhn. Ser. Sovrem. probl. matem. Fundam. napravleniya, 32, VINITI, 1988, 99–215

[35] Landis E. M., Uravneniya vtorogo poryadka ellipticheskogo i parabolicheskogo tipa, Nauka, M., 1971 | MR

[36] Gerver M. L., Landis E. M., “Odno obobschenie teoremy o srednem dlya funktsii mnogikh peremennykh”, Dokl. AN SSSR, 146:4 (1962), 761–764 | MR | Zbl

[37] Morse A. P., “The behavior of a function on its critical set”, Annals of Mathematics Second Series, 40:1 (1939), 62–70 | DOI | MR

[38] Landis E. M., “Nekotorye voprosy kachestvennoi teorii ellipticheskikh uravnenii vtorogo poryadka (sluchai mnogikh nezavisimykh peremennykh)”, Uspekhi matem. nauk, 18:1(109) (1963), 3–62 | MR

[39] Stampacchia G., “Le probleme de Dirichlet pour les equations elliptique second ordre à coefficients discontinus”, Ann. Inst. Fourier, 15:1 (1965), 189–257 | DOI | MR | Zbl