Multicriteria identification sets method
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 11, pp. 1872-1888 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A multicriteria identification and prediction method for mathematical models of simulation type in the case of several identification criteria (error functions) is proposed. The necessity of the multicriteria formulation arises, for example, when one needs to take into account errors of completely different origins (not reducible to a single characteristic) or when there is no information on the class of noise in the data to be analyzed. An identification sets method is described based on the approximation and visualization of the multidimensional graph of the identification error function and sets of suboptimal parameters. This method allows for additional advantages of the multicriteria approach, namely, the construction and visual analysis of the frontier and the effective identification set (frontier and the Pareto set for identification criteria), various representations of the sets of Pareto effective and subeffective parameter combinations, and the corresponding predictive trajectory tubes. The approximation is based on the deep holes method, which yields metric ε-coverings with nearly optimal properties, and on multiphase approximation methods for the Edgeworth-Pareto hull. The visualization relies on the approach of interactive decision maps. With the use of the multicriteria method, multiple-choice solutions of identification and prediction problems can be produced and justified by analyzing the stability of the optimal solution not only with respect to the parameters (robustness with respect to data) but also with respect to the chosen set of identification criteria (robustness with respect to the given collection of functionals).
@article{ZVMMF_2016_56_11_a3,
     author = {G. K. Kamenev},
     title = {Multicriteria identification sets method},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1872--1888},
     year = {2016},
     volume = {56},
     number = {11},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_11_a3/}
}
TY  - JOUR
AU  - G. K. Kamenev
TI  - Multicriteria identification sets method
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2016
SP  - 1872
EP  - 1888
VL  - 56
IS  - 11
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_11_a3/
LA  - ru
ID  - ZVMMF_2016_56_11_a3
ER  - 
%0 Journal Article
%A G. K. Kamenev
%T Multicriteria identification sets method
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2016
%P 1872-1888
%V 56
%N 11
%U http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_11_a3/
%G ru
%F ZVMMF_2016_56_11_a3
G. K. Kamenev. Multicriteria identification sets method. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 11, pp. 1872-1888. http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_11_a3/

[1] Krasnoschekov P. S., Petrov A. A., Printsipy postroeniya modelei, FAZIS, VTs RAN, M., 2000

[2] Lyung L., Identifikatsiya sistem. Teoriya dlya polzovatelya, Nauka, M., 1991 | MR

[3] N. S. Raibman (red.), Dispersionnaya identifikatsiya, Nauka, Fizmatlit, M., 1981

[4] Kamenev G. K., “Vizualnyi metod identifikatsii parametrov”, Dokl. AN, 359:3 (1998), 319–322 | MR

[5] Kamenev G. K., “Ob odnom podkhode k issledovaniyu neopredelennosti, voznikayuschei pri identifikatsii modelei”, Matem. modelirovanie, 22:9 (2010), 116–128 | Zbl

[6] Kamenev G. K., Metod issledovaniya neopredelennosti, voznikayuschei pri identifikatsii parametrov modelei, Izd. VTs RAN, M., 2010, 46 pp.

[7] Lotov A. V., “O ponyatii obobschennykh mnozhestv dostizhimosti i ikh postroenii dlya lineinykh upravlyaemykh sistem”, Dokl. AN SSSR, 250:5 (1980), 1081–1083 | MR | Zbl

[8] Lotov A. V., “Analiz potentsialnykh vozmozhnostei ekonomicheskikh sistem”, Ekonomika i matem. metody, 17:2 (1981), 377–381 | Zbl

[9] Lotov A. V., Bushenkov V. A., Kamenev G. K., Chernykh O. L., Kompyuter i poisk kompromissa. Metod dostizhimykh tselei, Nauka, M., 1997

[10] Lotov A. V., Bushenkov V. A., Kamenev G. K., Interactive decision maps. Approximation and Visualization of Pareto Frontier, Appl. Optimization, 89, Kluwer, New York, 2004 | DOI | MR | Zbl

[11] Kamenev G. K., Kondratev D. L., “Ob odnom metode issledovaniya nezamknutykh nelineinykh modelei”, Matem. modelirovanie, 1992, no. 3, 105–118

[12] Kamenev G. K., “Approksimatsiya vpolne ogranichennykh mnozhestv metodom Glubokikh Yam”, Zh. vychisl. matem. i matem. fiz., 41:11 (2001), 1751–1760 | MR | Zbl

[13] Olenev N. N., Kamenev G. K., Gusman V. L., Issledovanie ustoichivosti prognozirovaniya na modeli rossiiskoi ekonomiki metodom mnozhestv identifikatsii, Izd. VTs RAN, M., 2012, 49 pp.

[14] Kamenev G. K., Olenev N. N., “Issledovanie ustoichivosti identifikatsii i prognozirovaniya rossiiskoi ekonomiki”, Matem. modelirovanie, 26:9 (2014), 3–17

[15] Berezkin V. E., Kamenev G. K., Lotov A. V., “Gibridnye adaptivnye metody approksimatsii nevypukloi mnogomernoi granitsy Pareto”, Zh. vychisl. matem. i matem. fiz., 46:11 (2006), 2009–2023 | MR

[16] Kamenev G. K., Berezkin V. E., “Issledovanie skhodimosti dvukhfaznykh metodov approksimatsii obolochki Edzhvorta-Pareto v nelineinykh zadachakh mnogokriterialnoi optimizatsii”, Zh. vychisl. matem. i matem. fiz., 52:6 (2012), 990–998 | MR | Zbl

[17] Kamenev G. K., “Issledovanie skorosti skhodimosti i effektivnosti dvukhfaznykh metodov approksimatsii obolochki Edzhvorta–Pareto”, Zh. vychisl. matem. i matem. fiz., 53:4 (2013), 507–519 | DOI | MR | Zbl

[18] Lotov A. V., Pospelova I. I., Mnogokriterialnye zadachi prinyatiya reshenii, Maks Press, M., 2008

[19] Bard I., Nelineinoe otsenivanie parametrov, Statistika, M., 1979

[20] Kolmogorov A. N., Tikhomirov V. M., “$\mathcal{E}$-entropiya i $\mathcal{E}$-emkost mnozhestv v funktsionalnykh prostranstvakh”, Uspekhi matem. nauk, 14:2 (1959), 3–86 | Zbl

[21] Shiryaev A. N., Veroyatnost, Nauka, M., 1989 | MR

[22] Polyak B. T., Vvedenie v optimizatsiyu, Nauka, M., 1983 | MR

[23] Andreev M. Yu., Vrzhesch V. P., Pilnik N. P., Pospelov I. G., Khokhlov M. A., Zhukova A. A., Radionov S. A., “Model mezhvremennogo ravnovesiya ekonomiki Rossii, osnovannaya na dezagregirovanii makroekonomicheskogo balansa”, Tr. sem. im. I. G. Petrovskogo, 29, Izd-vo Mosk. un-ta, M., 2013, 43–145