Systems of Pfaffian equations and controlled systems
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 11, pp. 1863-1871 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The relation between the classical theory of Pfaffian systems and the modern theory of controlled systems is discussed. It is shown that this relation helps solve classification problems and terminal control problems for controlled systems.
@article{ZVMMF_2016_56_11_a2,
     author = {V. I. Elkin},
     title = {Systems of {Pfaffian} equations and controlled systems},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1863--1871},
     year = {2016},
     volume = {56},
     number = {11},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_11_a2/}
}
TY  - JOUR
AU  - V. I. Elkin
TI  - Systems of Pfaffian equations and controlled systems
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2016
SP  - 1863
EP  - 1871
VL  - 56
IS  - 11
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_11_a2/
LA  - ru
ID  - ZVMMF_2016_56_11_a2
ER  - 
%0 Journal Article
%A V. I. Elkin
%T Systems of Pfaffian equations and controlled systems
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2016
%P 1863-1871
%V 56
%N 11
%U http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_11_a2/
%G ru
%F ZVMMF_2016_56_11_a2
V. I. Elkin. Systems of Pfaffian equations and controlled systems. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 11, pp. 1863-1871. http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_11_a2/

[1] P. K. Rashevskii, Geometricheskaya teoriya differentsialnykh uravnenii s chastnymi proizvodnymi, Gostekhizdat, M.–L., 1947

[2] Schouten I. A., van der Kulk W., Pfaff's problem and its generalizations, Clarendon press, Oxford, 1949 | Zbl

[3] Arnold V. I., Varchenko A. N., Gusein-Zade S. M., Osobennosti differentsiruemykh otobrazhenii, Nauka, M., 1982 | MR

[4] Elkin V. I., “Reduktsiya nedoopredelennykh sistem obyknovennykh differentsialnykh uravnenii. I”, Differents. ur-niya, 45:12 (2009), 1687–1697 | MR | Zbl

[5] Elkin V. I., “Reduktsiya nedoopredelennykh sistem obyknovennykh differentsialnykh uravnenii. II”, Differents. ur-niya, 46:11 (2010), 1523–1535 | MR | Zbl

[6] Elkin V. I., “Reduktsiya nedoopredelennykh sistem obyknovennykh differentsialnykh uravnenii. III”, Differents. ur-niya, 47:11 (2011), 1538–1544 | MR | Zbl

[7] Elkin V. I., “Reduktsiya nedoopredelennykh sistem obyknovennykh differentsialnykh uravnenii. IV”, Differents. ur-niya, 48:11 (2012), 1459–1565

[8] Elkin V. I., “Reduktsiya nedoopredelennykh sistem obyknovennykh differentsialnykh uravnenii. V”, Differents. ur-niya, 51:1 (2015), 3–12 | DOI