Generalized fast automatic differentiation technique
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 11, pp. 1847-1862 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A new efficient technique intended for the numerical solution of a broad class of optimal control problems for complicated dynamical systems described by ordinary and/or partial differential equations is investigated. In this approach, canonical formulas are derived to precisely calculate the objective function gradient for a chosen finite-dimensional approximation of the objective functional.
@article{ZVMMF_2016_56_11_a1,
     author = {Yu. G. Evtushenko and V. I. Zubov},
     title = {Generalized fast automatic differentiation technique},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1847--1862},
     year = {2016},
     volume = {56},
     number = {11},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_11_a1/}
}
TY  - JOUR
AU  - Yu. G. Evtushenko
AU  - V. I. Zubov
TI  - Generalized fast automatic differentiation technique
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2016
SP  - 1847
EP  - 1862
VL  - 56
IS  - 11
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_11_a1/
LA  - ru
ID  - ZVMMF_2016_56_11_a1
ER  - 
%0 Journal Article
%A Yu. G. Evtushenko
%A V. I. Zubov
%T Generalized fast automatic differentiation technique
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2016
%P 1847-1862
%V 56
%N 11
%U http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_11_a1/
%G ru
%F ZVMMF_2016_56_11_a1
Yu. G. Evtushenko; V. I. Zubov. Generalized fast automatic differentiation technique. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 11, pp. 1847-1862. http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_11_a1/

[1] Albu A. F., Zubov V. I., “Vychislenie gradienta funktsionala v odnoi zadache optimalnogo upravleniya, svyazannoi s kristallizatsiei metalla”, Zh. vychisl. matem. i matem. fiz., 49:1 (2009), 51–75 | MR | Zbl

[2] Vasilev F. P., Metody optimizatsii, Faktorial Press, M., 2002

[3] Lellouche J.-M., Devenon J.-L., Dekeyser I., “Boundary control of Burgers' equation — a numerical approach”, Computers Math. Applic., 28:5 (1994), 33–44 | DOI | MR | Zbl

[4] Evtushenko Yu. G., Zasukhina E. S., Zubov V. I., “O chislennom podkhode k optimizatsii resheniya zadachi Byurgersa s pomoschyu granichnykh uslovii”, Zh. vychisl. matem. i matem. fiz., 37:12 (1997), 1449–1458 | MR | Zbl

[5] Aida-Zade K. R., Evtushenko Yu. G., “Bystroe avtomaticheskoe differentsirovanie”, Matem. modelirovanie, 1 (1989), 121–139 | MR

[6] Evtushenko Yu. G., Mazurik V. P., Matematicheskoe obespechenie optimizatsii, Znanie, M., 1989

[7] Evtushenko Y. G., “Automatic differentiation viewed from optimal control theory”, Proc. of the Workshop on Automatic Differentiation of Algorithms: Theory, Implementation and Application, SIAM, Philadelphia, 1991 | MR | Zbl

[8] Iri M., “Simultaneous computation of functions, partial derivatives and estimates of rounding errors”, Japan J. Appl. Math., 1 (1984), 223–252 | DOI | MR | Zbl

[9] Griewank A., Corliss G. F. (eds.), Automatic differentiation of algorithms. Theory, implementation and application, SIAM, Philadelphia, 1991 | MR | Zbl

[10] Evtushenko Yu., Zasuhina E., Zubov V., “Fast AD technique and inverse problems”, From Simulation to Optimization, Abstracts of Third International Conference on Automatic Differentiation (June 19–23, 2000), INRIA, Sophia Antipolis, France, 23–24

[11] Griewank A., Evaluating derivatives, SIAM, Philadelphia, 2000 | MR | Zbl

[12] Naumann U., The art of differentiating computer programs: an introduction to algorithmic differentiation, SIAM, Philadelphia, 2012 | MR | Zbl

[13] Evtushenko Y. G., “Computation of exact gradients in distributed dynamic systems”, Optimization Methods and Software, 9 (1998), 45–75 | DOI | MR | Zbl

[14] Evtushenko Yu. G., Optimizatsiya i bystroe avtomaticheskoe differentsirovanie, VTs im. A. A. Dorodnitsyna RAN, M., 2013

[15] Albu A. F., Zubov V. I., “Optimalnoe upravlenie protsessom kristallizatsii veschestva”, Zh. vychisl. matem. i matem. fiz., 44:1 (2004), 38–50 | MR | Zbl

[16] Albu A. V., Albu A. F., Zubov V. I., “Vychislenie gradienta funktsionala v odnoi zadache optimalnogo upravleniya slozhnoi dinamicheskoi sistemoi”, Zh. vychisl. matem. i matem. fiz., 51:5 (2011), 814–833 | MR | Zbl

[17] Albu A. V., Albu A. F., Zubov V. I., “Upravlenie protsessom kristallizatsii veschestva v liteinoi forme slozhnoi geometrii”, Zh. vychisl. matem. i matem fiz., 52:12 (2012), 2149–2162 | MR | Zbl

[18] Albu A. F., Zubov V. I., “Issledovanie zadachi optimalnogo upravleniya protsessom kristallizatsii veschestva v novoi postanovke”, Zh. vychisl. matem. i matem. fiz., 54:5 (2014), 734–745 | DOI | MR | Zbl

[19] Albu A. F., Zubov V. I., “Issledovanie zadachi optimalnogo upravleniya protsessom kristallizatsii veschestva v novoi postanovke dlya ob'ekta slozhnoi geometricheskoi formy”, Zh. vychisl. matem. i matem. fiz., 54:12 (2014), 1879–1893 | DOI | Zbl

[20] Albu A. F., Zubov V. I., “Ob effektivnosti resheniya zadach optimalnogo upravleniya s pomoschyu metodologii bystrogo avtomaticheskogo differentsirovaniya”, Tr. In-ta matem. i mekhan. UrO RAN, 21, no. 4, 2015, 20–29 | MR

[21] Sobolev S. L., Uravneniya matematicheskoi fiziki, Nauka, M., 1966

[22] Marchuk G. I., Sopryazhennye uravneniya i analiz slozhnykh sistem, Nauka, M., 1992

[23] Samarskii A. A., Teoriya raznostnykh skhem, Nauka, M., 1989

[24] Lavrentev M. A., Lyusternik L. A., Kurs variatsionnogo ischisleniya, GITTL, M.–L., 1950

[25] Gelfand I. M., Fomin S. V., Variatsionnoe ischislenie, GIFML, M., 1961