Generalized fast automatic differentiation technique
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 11, pp. 1847-1862
Voir la notice de l'article provenant de la source Math-Net.Ru
A new efficient technique intended for the numerical solution of a broad class of optimal control problems for complicated dynamical systems described by ordinary and/or partial differential equations is investigated. In this approach, canonical formulas are derived to precisely calculate the objective function gradient for a chosen finite-dimensional approximation of the objective functional.
@article{ZVMMF_2016_56_11_a1,
author = {Yu. G. Evtushenko and V. I. Zubov},
title = {Generalized fast automatic differentiation technique},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1847--1862},
publisher = {mathdoc},
volume = {56},
number = {11},
year = {2016},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_11_a1/}
}
TY - JOUR AU - Yu. G. Evtushenko AU - V. I. Zubov TI - Generalized fast automatic differentiation technique JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2016 SP - 1847 EP - 1862 VL - 56 IS - 11 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_11_a1/ LA - ru ID - ZVMMF_2016_56_11_a1 ER -
Yu. G. Evtushenko; V. I. Zubov. Generalized fast automatic differentiation technique. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 11, pp. 1847-1862. http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_11_a1/