Difference method for solving a nonlocal boundary value problem for a degenerating third-order pseudo-parabolic equation with variable coefficients
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 10, pp. 1780-1794 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A nonlocal boundary value problem for a degenerating third-order pseudo-parabolic equation with variable coefficients is considered. For solving this problem, a priori estimates in the differential and difference forms are obtained. The a priori estimates imply the uniqueness and stability of the solution on a layer with respect to the initial data and the right-hand side and the convergence of the solution of the difference problem to the solution of the differential problem.
@article{ZVMMF_2016_56_10_a9,
     author = {M. Kh. Beshtokov},
     title = {Difference method for solving a nonlocal boundary value problem for a degenerating third-order pseudo-parabolic equation with variable coefficients},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1780--1794},
     year = {2016},
     volume = {56},
     number = {10},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_10_a9/}
}
TY  - JOUR
AU  - M. Kh. Beshtokov
TI  - Difference method for solving a nonlocal boundary value problem for a degenerating third-order pseudo-parabolic equation with variable coefficients
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2016
SP  - 1780
EP  - 1794
VL  - 56
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_10_a9/
LA  - ru
ID  - ZVMMF_2016_56_10_a9
ER  - 
%0 Journal Article
%A M. Kh. Beshtokov
%T Difference method for solving a nonlocal boundary value problem for a degenerating third-order pseudo-parabolic equation with variable coefficients
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2016
%P 1780-1794
%V 56
%N 10
%U http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_10_a9/
%G ru
%F ZVMMF_2016_56_10_a9
M. Kh. Beshtokov. Difference method for solving a nonlocal boundary value problem for a degenerating third-order pseudo-parabolic equation with variable coefficients. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 10, pp. 1780-1794. http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_10_a9/

[1] Bitsadze A. V., Samarskii A. A., “O nekotorykh prosteishikh obobscheniyakh lineinykh ellipticheskikh zadach”, Dokl. SSSR, 185:4 (1969), 739–740 | MR | Zbl

[2] Barenblat G. I., Zheltov Yu. P., Kochina I. N., “Ob osnovnykh predstavleniyakh teorii filtratsii odnorodnykh zhidkostei v treschinovatykh porodakh”, Prikl. matem. i mekhan., 25:5 (1960), 852–864

[3] Dzektser E. S., “Uravneniya dvizheniya podzemnykh vod so svobodnoi poverkhnostyu v mnogosloinykh sredakh”, Dokl. SSSR, 220:3 (1975), 540–543 | Zbl

[4] Rubinshtein L. I., “K voprosu o protsesse rasprostraneniya tepla v geterogennykh sredakh”, Izv. AN SSSR. Ser. geogr., 12:1 (1948), 27–45 | MR

[5] Ting T. W., “A cooling process according to two-temperature theory of heat conduction”, J. Math. Anal. Appl., 45:1 (1974), 23–31 | DOI | MR | Zbl

[6] Hallaire M., “L'eau et la production vegetable”, Institut National de la Recherche Agronomique, 1964, no. 9

[7] Chudnovskii A. F., Teplofizika pochv, Nauka, M., 1976

[8] Colton D. L., “Pseudoparabolic equations in one space variable”, J. Different. Equations, 12 (1972), 559–565 | DOI | MR | Zbl

[9] Colton D. L., “Integral operators and the first initial-boundary value problems for pseudoparabolic equations with analytic coefficients”, J. Different. equations, 13 (1973), 506–522 | DOI | MR | Zbl

[10] Coleman B. D., Duffin R. J., Mizel V. J., “Instability, uniqueness, and nonexistence theorems for the equation $u_t=u_{xx}-u_{xxt}$ on a strip”, Arch. Rat. Mech. Anal., 19 (1965), 100–116 | DOI | MR | Zbl

[11] Rundell W., Stecher M., “Maximum principles for pseudoparabolic partial differential equations”, J. Math. Anal. Appl., 57:1 (1977), 110–118 | DOI | MR | Zbl

[12] Rundell W., “The construction of solutions to pseudoparabolic equations noncylindrical domains”, J. Different. equations, 28 (1978), 394–404 | DOI | MR

[13] Rundell W., “The Stefan problem for pseudoheat equation”, Indiana University Math. J., 27:5 (1978), 739–750 | DOI | MR | Zbl

[14] Shkhanukov M. X., “O nekotorykh kraevykh zadachakh dlya uravneniya tretego poryadka, voznikayuschikh pri modelirovanii filtratsii zhidkosti v poristykh sredakh”, Differents. ur-niya, 18:4 (1982), 689–699 | MR | Zbl

[15] Showalter R. E., Ting T. W., “Pseudoparabolic partial differential equations”, SIAM J. Math. Anal., 1:1 (1970), 1–26 | DOI | MR | Zbl

[16] Ting T. W., “Certain non-steady flows of second-order fluids”, Arch. Ration Mech. Anal., 14:1 (1963), 1–26 | DOI | MR | Zbl

[17] Vodakhova V. A., “Kraevaya zadacha s nelokalnym usloviem A. M. Nakhusheva dlya odnogo psevdoparabolicheskogo uravneniya vlagoperenosa”, Differents. ur-niya, 18:2 (1982), 280–285 | MR | Zbl

[18] Sveshnikov A. A., Alshin A. B., Korpusov M. O., Pletner Yu. D., Lineinye i nelineinye uravneniya sobolevskogo tipa, Fizmatlit, M., 2007

[19] Kozhanov A. I., “Ob odnoi nelokalnoi kraevoi zadache s peremennymi koeffitsientami dlya uravnenii teploprovodnosti i Allera”, Differents. ur-niya, 40:6 (2004), 763–774 | MR | Zbl

[20] Beshtokov M. Kh., “Metod funktsii Rimana i raznostnyi metod resheniya odnoi nelokalnoi kraevoi zadachi dlya uravneniya tretego poryadka giperbolicheskogo tipa”, Izvestiya vyssh. uchebn. zavedenii. Severo-Kavkazskii region, 2007, no. 5, 6–9

[21] Beshtokov M. Kh., “Raznostnyi metod resheniya odnoi nelokalnoi kraevoi zadachi dlya psevdoparabolicheskogo uravneniya tretego poryadka”, Differents. ur-niya, 49:9 (2013), 1170–1177 | Zbl

[22] Beshtokov M. Kh., “Ob odnoi kraevoi zadache dlya psevdoparabolicheskogo uravneniya tretego poryadka s nelokalnym usloviem”, Izvestiya vyssh. uchebn. zavedenii. Severo-Kavkazskii region, 2013, no. 1, 5–10

[23] Beshtokov M. Kh., “Chislennyi metod resheniya odnoi nelokalnoi kraevoi zadachi dlya uravneniya tretego poryadka giperbolicheskogo tipa”, Zh. vychisl. matem. i matem. fiz., 54:9 (2014), 1497–1514 | DOI | MR

[24] Samarskii A. A., Teoriya raznostnykh skhem, Nauka, M., 1983

[25] Olisaev E. G., Raznostnye metody resheniya nelokalnykh kraevykh zadach dlya uravneniya parabolicheskogo tipa s vyrozhdeniem, Dis. ... kand. fiz.-matem. nauk, RGB, M., 2003

[26] Ladyzhenskaya O. A., Kraevye zadachi matematicheskoi fiziki, Nauka, M., 1973

[27] Andreev V. B., “O skhodimosti raznostnykh skhem, approksimiruyuschikh vtoruyu i tretyu kraevye zadachi dlya ellipticheskikh uravnenii”, Zh. vychisl. matem. i matem. fiz., 8:6 (1968), 1218–1231 | MR | Zbl

[28] Samarskii A. A., Gulin A. V., Ustoichivost raznostnykh skhem, Nauka, M., 1973

[29] Faddeev D. K., Faddeeva V. N., Vychislitelnye metody lineinoi algebry, Fizmatgiz, M., 1960