Blowup of the solution to the Cauchy problem with arbitrary positive energy for a system of Klein–Gordon equations in the de Sitter metric
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 10, pp. 1775-1779 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The $\phi^4$ model of a scalar (complex) field in the metric of an expanding universe, namely, in the de Sitter metric is considered. The initial energy of the system can have an arbitrarily high positive value. Sufficient conditions for solution blowup in a finite time are obtained. The existence of blowup is proved by applying H.A. Levine's modified method is used.
@article{ZVMMF_2016_56_10_a8,
     author = {M. O. Korpusov and S. G. Mikhailenko},
     title = {Blowup of the solution to the {Cauchy} problem with arbitrary positive energy for a system of {Klein{\textendash}Gordon} equations in the de {Sitter} metric},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1775--1779},
     year = {2016},
     volume = {56},
     number = {10},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_10_a8/}
}
TY  - JOUR
AU  - M. O. Korpusov
AU  - S. G. Mikhailenko
TI  - Blowup of the solution to the Cauchy problem with arbitrary positive energy for a system of Klein–Gordon equations in the de Sitter metric
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2016
SP  - 1775
EP  - 1779
VL  - 56
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_10_a8/
LA  - ru
ID  - ZVMMF_2016_56_10_a8
ER  - 
%0 Journal Article
%A M. O. Korpusov
%A S. G. Mikhailenko
%T Blowup of the solution to the Cauchy problem with arbitrary positive energy for a system of Klein–Gordon equations in the de Sitter metric
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2016
%P 1775-1779
%V 56
%N 10
%U http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_10_a8/
%G ru
%F ZVMMF_2016_56_10_a8
M. O. Korpusov; S. G. Mikhailenko. Blowup of the solution to the Cauchy problem with arbitrary positive energy for a system of Klein–Gordon equations in the de Sitter metric. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 10, pp. 1775-1779. http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_10_a8/

[1] Seagal I., “Nonlinear partial differential equations in Quantum Field Theory”, Proc. Symp. Appl. Math. A.M.S., 17 (1965), 210–226 | DOI | MR

[2] Wang Y., “Nonexistence of global solutions of a class of coupled nonlinear Klein-Gordon equations with nonnegative potentials and arbitrary initial energy”, IMA J. Appl. Math., 24:3 (2009), 392–415 | DOI | MR

[3] Al'shin A. B., Korpusov M. O., Sveshnikov A. G., Blow-up in nonlinear Sobolev type equations, De Gruyter Series in Nonlinear Analysis and Applications, 15, De Gruyter, 2011, 648 pp. | MR | Zbl

[4] Karen Ya., “The semilinear Klein-Gordon equation in de Sitter spacetime”, Discrete Contin. Dyn. Syst. Ser. S 2, 3 (2009), 679–696 | MR | Zbl

[5] Mitidieri E. L., Pokhozhaev S. I., Apriornye otsenki i otsutstvie reshenii nelineinykh uravnenii i neravenstv v chastnykh proizvodnykh, Tr. MIAN, 234, 2001

[6] Levine H. A., “Instability and nonexistence of global solutions to nonlinear wave equations of the form $Pu_{tt}=-Au+\mathcal{F}(u)$”, Trans. American Math. Soc., 1974, 1–21 | MR | Zbl

[7] Levine H. A., Pucci P., Serrin J., “Some remarks on the global nonexistence problem for nonautonomous abstract evolution equations”, Contemporary Math., 208, 1997, 253–263 | DOI | MR | Zbl

[8] Pucci P., Serrin J., “Some new results on global nonexistence for abstract evolution equation with positive initial energy”, Topological Methods in Nonlinear Analys. J. of J. Schauder Center for Nonlinear Studies, 10 (1997), 241–247 | MR | Zbl

[9] Pucci P., Serrin J., “Global nonexistence for abstract evolution equations with positive initial energy”, J. Diff. Equations, 150 (1998), 203–214 | DOI | MR | Zbl

[10] Straughan B., “Further global nonexistence theorems for abstract nonlinear wave equations”, Proc. Amer. Math. Soc., 2 (1975), 381–390 | DOI | MR

[11] Kalantarov V. K., Ladyzhenskaya O. A., “Formirovanie kollapsov v kvazilineinykh uravneniyakh parabolicheskogo i giperbolicheskogo tipov”, Zapiski LOMI, 69, 1977, 77–102 | MR | Zbl

[12] Levine H. A., Todorova G., “Blow up of solutions of the Cauchy problem for a wave equation with nonlinear damping and source terms and positive initial energy in four space-time dimensions”, Proc. Amer. Math. Soc., 129 (2003), 793–805 | DOI | MR

[13] Pohozaev S. I., “Critical nonlinearities in partial differential equations”, Milan J. Math., 77 (2009), 127–150 | DOI | MR | Zbl

[14] Galaktionov V. A., Pohozaev S. I., Blow-up, critical exponents and asymptotic spectra for nonlinear hyperbolic equations, Preprint, No 00/10, Univ. Bath. Math., 2000

[15] Galaktionov V. A., Pokhozhaev S. I., “Uravneniya nelineinoi dispersii tretego poryadka: udarnye volny, volny razrezheniya i razrusheniya”, Zh. vychisl. matem. i matem. fiz., 48:10 (2008), 1819–1946 | MR

[16] Samarskii A. A., Galaktionov V. A., Kurdyumov S. P., Mikhailov A. P., Rezhimy s obostreniem v zadachakh dlya kvazilineinykh parabolicheskikh uravnenii, Nauka, M., 1987