Application of fast automatic differentiation for solving the inverse coefficient problem for the heat equation
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 10, pp. 1760-1774 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The problem of determining the thermal conductivity coefficient that depends on temperature is studied. The consideration is based on the initial-boundary value problem for the one-dimensional unsteady heat equation. The mean-root-square deviation of the temperature distribution field and the heat flux from the experimental data on the left boundary of the domain is used as the objective functional. An analytical expression for the gradient of the objective functional is obtained. An algorithm for the numerical solution of the problem based on the modern fast automatic differentiation technique is proposed. Examples of solving the problem are discussed.
@article{ZVMMF_2016_56_10_a7,
     author = {V. I. Zubov},
     title = {Application of fast automatic differentiation for solving the inverse coefficient problem for the heat equation},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1760--1774},
     year = {2016},
     volume = {56},
     number = {10},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_10_a7/}
}
TY  - JOUR
AU  - V. I. Zubov
TI  - Application of fast automatic differentiation for solving the inverse coefficient problem for the heat equation
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2016
SP  - 1760
EP  - 1774
VL  - 56
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_10_a7/
LA  - ru
ID  - ZVMMF_2016_56_10_a7
ER  - 
%0 Journal Article
%A V. I. Zubov
%T Application of fast automatic differentiation for solving the inverse coefficient problem for the heat equation
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2016
%P 1760-1774
%V 56
%N 10
%U http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_10_a7/
%G ru
%F ZVMMF_2016_56_10_a7
V. I. Zubov. Application of fast automatic differentiation for solving the inverse coefficient problem for the heat equation. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 10, pp. 1760-1774. http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_10_a7/

[1] Dulnev G. N., Zarichnyak Yu. P., Teploprovodnost smesei i kompozitsionnykh materialov, Spravochnaya kniga, Energiya, L., 1974

[2] Zverev V. G., Goldin V. D., Nazarenko V. A., “Radiatsionno-konduktivnyi teploperenos v voloknistoi termostoikoi izolyatsii pri teplovom vozdeistvii”, Teplofizika vysokikh temperatur, 46:1 (2008), 119–125 | MR

[3] Alifanov O. M., Cherepanov V. V., “Matematicheskoe modelirovanie vysokoporistykh voloknistykh materialov i opredelenie ikh fizicheskikh svoistv”, Teplofizika vysokikh temperatur, 47:3 (2009), 463–472 | MR

[4] Kozdoba L. A., Krukovskii P. G., Metody resheniya obratnykh zadach teploperenosa, Naukova Dumka, Kiev, 1982

[5] Alifanov O. M., Obratnye zadachi teploobmena, Mashinostroenie, M., 1988

[6] Vabischevich P. N., Denisenko A. Yu., “Chislennye metody resheniya koeffitsientnykh obratnykh zadach”, Metody matematicheskogo modelirovaniya i vychislitelnoi diagnostiki, Izd-vo MGU, M., 1990, 35–45

[7] Samarskii A. A., Vabischevich P. N., “Raznostnye metody resheniya obratnykh zadach matematicheskoi fiziki”, Fundamentalnye osnovy matematicheskogo modelirovaniya, Nauka, M., 1997, 5–97

[8] Samarskii A. A., Vabischevich P. N., Vychislitelnaya teploperedacha, Editorial URSS, M., 2003

[9] Marchuk G. I., Sopryazhennye uravneniya i analiz slozhnykh sistem, Nauka, M., 1992

[10] Evtushenko Y. G., “Computation of exact gradients in distributed dynamic systems”, Optimization Methods and Software, 9 (1998), 45–75 | DOI | MR | Zbl

[11] Evtushenko Yu. G., Optimizatsiya i bystroe avtomaticheskoe differentsirovanie, VTs im. A. A. Dorodnitsyna RAN, M., 2013

[12] Evtushenko Yu. G., Zasukhina E. S., Zubov V. I., “O chislennom podkhode k optimizatsii resheniya zadachi Byurgersa s pomoschyu granichnykh uslovii”, Zh. vychisl. matem. i matem. fiz., 37:12 (1997), 1449–1458 | MR | Zbl

[13] Albu A. F., Zubov V. I., “Issledovanie zadachi optimalnogo upravleniya protsessom kristallizatsii veschestva v novoi postanovke dlya ob'ekta slozhnoi geometricheskoi formy”, Zh. vychisl. matem. i matem. fiz., 54:12 (2014), 1879–1893 | DOI | Zbl

[14] Albu A. F., Zubov V. I., “Ob effektivnosti resheniya zadach optimalnogo upravleniya s pomoschyu metodologii bystrogo avtomaticheskogo differentsirovaniya”, Tr. In-ta matem. i mekhan. UrO RAN, 21, no. 4, 2015, 20–29 | MR

[15] Sirazetdinov T. K., Optimizatsiya sistem s raspredelennymi parametrami, Nauka, M., 1977

[16] Kraiko A. N., Variatsionnye zadachi gazovoi dinamiki, Nauka, M., 1979

[17] Vasilev F. P., Metody optimizatsii, Faktorial Press, M., 2002

[18] Samarskii A. A., Teoriya raznostnykh skhem, Nauka, M., 1989