@article{ZVMMF_2016_56_10_a4,
author = {Yu. A. Chernyaev},
title = {Convergence of the gradient projection method and {Newton's} method as applied to optimization problems constrained by intersection of a spherical surface and a convex closed set},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1733--1749},
year = {2016},
volume = {56},
number = {10},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_10_a4/}
}
TY - JOUR AU - Yu. A. Chernyaev TI - Convergence of the gradient projection method and Newton's method as applied to optimization problems constrained by intersection of a spherical surface and a convex closed set JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2016 SP - 1733 EP - 1749 VL - 56 IS - 10 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_10_a4/ LA - ru ID - ZVMMF_2016_56_10_a4 ER -
%0 Journal Article %A Yu. A. Chernyaev %T Convergence of the gradient projection method and Newton's method as applied to optimization problems constrained by intersection of a spherical surface and a convex closed set %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2016 %P 1733-1749 %V 56 %N 10 %U http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_10_a4/ %G ru %F ZVMMF_2016_56_10_a4
Yu. A. Chernyaev. Convergence of the gradient projection method and Newton's method as applied to optimization problems constrained by intersection of a spherical surface and a convex closed set. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 10, pp. 1733-1749. http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_10_a4/
[1] Vasilev F. P., Chislennye metody resheniya ekstremalnykh zadach, Nauka, M., 1980
[2] Karmanov V. G., Matematicheskoe programmirovanie, Nauka, M., 1975 | MR
[3] Nedich A., “Trekhshagovyi metod proektsii gradienta dlya zadach minimizatsii”, Izvestiya vuzov. Matematika, 1993, no. 10, 32–37 | MR
[4] Vasilev F. P., Nedich A., “Ob odnom variante regulyarizovannogo metoda proektsii gradienta”, Zh. vychisl. matem. i matem. fiz., 34:4 (1994), 511–519 | MR | Zbl
[5] Antipin A. S., “Ob otsenkakh skorosti skhodimosti metoda proektsii gradienta”, Izvestiya vuzov. Matematika, 1995, no. 6, 16–24 | MR
[6] Pshenichnyi B. N., Danilin Yu. M., Chislennye metody v ekstremalnykh zadachakh, Nauka, M., 1975 | MR
[7] Vasilev F. P., Yachimovich M., “Ob iterativnoi regulyarizatsii metoda Nyutona”, Zh. vychisl. matem. i matem. fiz., 21:3 (1981), 775–778 | MR
[8] Vasilev F. P., “O regulyarizatsii metoda Nyutona pri netochnom zadanii iskhodnykh dannykh”, Trudy Matematicheskogo instituta AN SSSR, 167, 1985, 53–59 | MR | Zbl
[9] Bogomolov N. A., Karmanov V. G., “O metode vychisleniya statsionarnykh tochek obschei zadachi nelineinogo programmirovaniya”, Zh. vychisl. matem. i matem. fiz., 17:1 (1977), 72–78 | MR | Zbl
[10] Zabotin V. I., Minnibaev T. F., “Metod vozmozhnykh napravlenii dlya zadach matematicheskogo programmirovaniya s predvypuklymi ogranicheniyami”, Zh. vychisl. matem. i matem. fiz., 48:2 (2008), 255–263 | MR | Zbl
[11] Bertsekas D., Uslovnaya optimizatsiya i metody mnozhitelei Lagranzha, Radio i svyaz, M., 1987 | MR
[12] Golshtein E. G., Tretyakov N. V., Modifitsirovannye funktsii Lagranzha: Teoriya i metody optimizatsii, Nauka, M., 1989 | MR
[13] Golikov A. I., Zhadan V. G., “Iterativnye metody resheniya zadach nelineinogo programmirovaniya s ispolzovaniem modifitsirovannykh funktsii Lagranzha”, Zh. vychisl. matem. i matem. fiz., 20:4 (1980), 874–888 | MR
[14] Zhadan V. G., “Modifitsirovannye funktsii Lagranzha v nelineinom programmirovanii”, Zh. vychisl. matem. i matem. fiz., 22:2 (1982), 296–308 | MR | Zbl
[15] Pshenichnyi B. N., Sobolenko L. A., “Uskorenie skhodimosti metoda linearizatsii dlya zadachi uslovnoi minimizatsii”, Zh. vychisl. matem. i matem. fiz., 20:3 (1980), 605–614 | MR | Zbl
[16] Golikov A. I., Zhadan V. G., “Dve modifikatsii metoda linearizatsii v nelineinom programmirovanii”, Zh. vychisl. matem. i matem. fiz., 23:2 (1983), 314–325 | MR | Zbl
[17] Antipin A. S., Nedich A., Yachimovich M., “Trekhshagovyi metod linearizatsii dlya zadach minimizatsii”, Izvestiya vuzov. Matematika, 1994, no. 12, 3–7
[18] Antipin A. S., Nedich A., Yachimovich M., “Dvukhshagovyi metod linearizatsii dlya zadach minimizatsii”, Zh. vychisl. matem. i matem. fiz., 36:4 (1996), 18–25 | MR | Zbl
[19] Chernyaev Yu. A., “Skhodimost metoda proektsii gradienta dlya odnogo klassa nevypuklykh zadach matematicheskogo programmirovaniya”, Izvestiya vuzov. Matematika, 2005, no. 12(523), 76–79
[20] Chernyaev Yu. A., “Obobschenie metoda Nyutona na klass nevypuklykh zadach matematicheskogo programmirovaniya”, Izvestiya vuzov. Matematika, 2008, no. 1(548), 78–82
[21] Chernyaev Yu. A., “Obobschenie metoda proektsii gradienta i metoda Nyutona na ekstremalnye zadachi s ogranicheniem v vide gladkoi poverkhnosti”, Zh. vychisl. matem. i matem. fiz., 55:9 (2015), 1493–1502 | DOI | Zbl
[22] Dulliev A. M., “Relaksatsionnyi metod minimizatsii gladkoi funktsii na obobschennom segmente sfery”, Zh. vychisl. matem. i matem. fiz., 54:2 (2014), 208–223 | DOI | Zbl
[23] Dulliev A. M., Zabotin V. I., “Iteratsionnyi algoritm proektirovaniya tochki na nevypukloe mnogoobrazie v lineinom normirovannom prostranstve”, Zh. vychisl. matem. i matem. fiz., 44:5 (2004), 827–830 | MR | Zbl
[24] Loran P. Zh., Approksimatsiya i optimizatsiya, Mir, M., 1975
[25] Pshenichnyi B. N., Vypuklyi analiz i ekstremalnye zadachi, Nauka, M., 1980 | MR