Control of complex heat transfer on producing extremal fields
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 10, pp. 1725-1732 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A time-dependent model of complex heat transfer including the $P_1$ approximation for the equation of radiative transfer is considered. The problem of finding the coefficient in the boundary condition from a given interval, providing the minimum (maximum) temperature and radiation intensity in the entire domain is formulated. The solvability of the control problem is proven, conditions for optimality are obtained, and an iterative algorithm for finding the optimal control is found.
@article{ZVMMF_2016_56_10_a3,
     author = {G. V. Grenkin and A. Yu. Chebotarev},
     title = {Control of complex heat transfer on producing extremal fields},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1725--1732},
     year = {2016},
     volume = {56},
     number = {10},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_10_a3/}
}
TY  - JOUR
AU  - G. V. Grenkin
AU  - A. Yu. Chebotarev
TI  - Control of complex heat transfer on producing extremal fields
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2016
SP  - 1725
EP  - 1732
VL  - 56
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_10_a3/
LA  - ru
ID  - ZVMMF_2016_56_10_a3
ER  - 
%0 Journal Article
%A G. V. Grenkin
%A A. Yu. Chebotarev
%T Control of complex heat transfer on producing extremal fields
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2016
%P 1725-1732
%V 56
%N 10
%U http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_10_a3/
%G ru
%F ZVMMF_2016_56_10_a3
G. V. Grenkin; A. Yu. Chebotarev. Control of complex heat transfer on producing extremal fields. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 10, pp. 1725-1732. http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_10_a3/

[1] Clever D., Lang J., “Optimal control of radiative heat transfer in glass cooling with restrictions on the temperature gradient”, Optimal Control Appl. Methods, 33:2 (2012), 157–175 | DOI | MR | Zbl

[2] Frank M., Klar A., Pinnau R., “Optimal control of glass cooling using simplified $\mathrm{P_N}$ theory”, Transport Theory Statist. Phys., 39:2–4 (2010), 282–311 | DOI | MR | Zbl

[3] Pinnau R., Thömmes G., “Optimal boundary control of glass cooling processes”, Math. Methods Appl. Sci., 27:11 (2004), 1261–1281 | DOI | MR | Zbl

[4] Pinnau R., “Analysis of optimal boundary control for radiative heat transfer modeled by the $\mathrm{SP}_1$-system”, Commun. Math. Sci., 5:4 (2007), 951–969 | DOI | MR | Zbl

[5] Pinnau R., Schulze A., “Newton's method for optimal temperature-tracking of glass cooling processes”, Inverse Probl. Sci. Engng., 15:4 (2007), 303–323 | DOI | MR | Zbl

[6] Thömmes G., Pinnau R., Seaïd M., Götz T., Klar A., “Numerical methods and optimal control for glass cooling processes”, Transport Theory Statist. Phys., 31:4–6 (2002), 513–529 | DOI | MR | Zbl

[7] Tse O., Pinnau R., “Optimal control of a simplified natural convection-radiation model”, Commun. Math. Sci., 11:3 (2013), 679–707 | DOI | MR | Zbl

[8] Tse O., Pinnau R., Siedow N., “Identification of temperature dependent parameters in a simplified radiative heat transfer”, Aust. J. Basic Appl. Sci., 5:1 (2011), 7–14

[9] Kovtanyuk A. E., Chebotarev A. Yu., Botkin N. D., Hoffmann K.-H., “Theoretical analysis of an optimal control problem of conductive-convective-radiative heat transfer”, J. Math. Anal. Appl., 412:1 (2014), 520–528 | DOI | MR | Zbl

[10] Grenkin G. V., “Optimalnoe upravlenie v nestatsionarnoi zadache slozhnogo teploobmena”, Dalnevost. matem. zhurnal, 14:2 (2014), 160–172 | Zbl

[11] Grenkin G. V., Chebotarev A. Yu., “Nestatsionarnaya zadacha slozhnogo teploobmena”, Zh. vychisl. matem. i matem. fiz., 54:11 (2014), 1806–1816 | DOI | MR | Zbl

[12] Grenkin G. V., Chebotarev A. Yu., “Ustoichivost statsionarnykh reshenii diffuzionnoi modeli slozhnogo teploobmena”, Dalnevost. matem. zhurnal, 14:1 (2014), 18–32 | MR | Zbl

[13] Grenkin G. V., Chebotarev A. Yu., “Neodnorodnaya nestatsionarnaya zadacha slozhnogo teploobmena”, Sib. elektron. matem. izv., 12 (2015), 562–576 | Zbl

[14] Kovtanyuk A. E., Chebotarev A. Yu., “An iterative method for solving a complex heat transfer problem”, Appl. Math. Comput., 219:17 (2013), 9356–9362 | MR | Zbl

[15] Kovtanyuk A. E., Chebotarev A. Yu., “Statsionarnaya zadacha slozhnogo teploobmena”, Zh. vychisl. matem. i matem. fiz., 54:4 (2014), 711–719 | DOI | MR | Zbl

[16] Kovatnyuk A. E., Chebotarev A. Yu., Botkin N. D., Hoffmann K.-H., “The unique solvability of a complex 3D heat transfer problem”, J. Math. Anal. Appl., 409:2 (2014), 808–815 | DOI | MR

[17] Kovtanyuk A. E., Chebotarev A. Yu., Botkin N. D., Hoffmann K.-H., “Solvability of $\mathrm{P}_1$ approximation of a conductive-radiative heat transfer problem”, Appl. Math. Comput., 249 (2014), 247–252 | MR | Zbl

[18] Kovtanyuk A. E., Chebotarev A. Yu., Botkin N. D., Hoffmann K.-H., “Unique solvability of a steady-state complex heat transfer model”, Commun. Nonlinear Sci. Numer. Simul., 20:3 (2015), 776–784 | DOI | MR | Zbl

[19] Amosov A. A., “Globalnaya razreshimost odnoi nelineinoi nestatsionarnoi zadachi s nelokalnym kraevym usloviem tipa teploobmena izlucheniem”, Differents. ur-niya, 41:1 (2005), 93–104 | MR | Zbl

[20] Amosov A. A., “Nonstationary nonlinear nonlocal problem of radiative-conductive heat transfer in a system of opaque bodies with properties depending on the radiation frequence”, J. Math. Sci., 165:1 (2010), 1–41 | DOI | MR | Zbl

[21] Modest M. F., Radiative Heat Transfer, Academic Press, 2003

[22] Boas D. A., Diffuse photon probes of structural and dynamical properties of turbid media: theory and biomedical applications, A Ph. D. Dissertation in Physics, University of Pennsylvania, 1996 | Zbl