@article{ZVMMF_2016_56_10_a3,
author = {G. V. Grenkin and A. Yu. Chebotarev},
title = {Control of complex heat transfer on producing extremal fields},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1725--1732},
year = {2016},
volume = {56},
number = {10},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_10_a3/}
}
TY - JOUR AU - G. V. Grenkin AU - A. Yu. Chebotarev TI - Control of complex heat transfer on producing extremal fields JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2016 SP - 1725 EP - 1732 VL - 56 IS - 10 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_10_a3/ LA - ru ID - ZVMMF_2016_56_10_a3 ER -
G. V. Grenkin; A. Yu. Chebotarev. Control of complex heat transfer on producing extremal fields. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 10, pp. 1725-1732. http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_10_a3/
[1] Clever D., Lang J., “Optimal control of radiative heat transfer in glass cooling with restrictions on the temperature gradient”, Optimal Control Appl. Methods, 33:2 (2012), 157–175 | DOI | MR | Zbl
[2] Frank M., Klar A., Pinnau R., “Optimal control of glass cooling using simplified $\mathrm{P_N}$ theory”, Transport Theory Statist. Phys., 39:2–4 (2010), 282–311 | DOI | MR | Zbl
[3] Pinnau R., Thömmes G., “Optimal boundary control of glass cooling processes”, Math. Methods Appl. Sci., 27:11 (2004), 1261–1281 | DOI | MR | Zbl
[4] Pinnau R., “Analysis of optimal boundary control for radiative heat transfer modeled by the $\mathrm{SP}_1$-system”, Commun. Math. Sci., 5:4 (2007), 951–969 | DOI | MR | Zbl
[5] Pinnau R., Schulze A., “Newton's method for optimal temperature-tracking of glass cooling processes”, Inverse Probl. Sci. Engng., 15:4 (2007), 303–323 | DOI | MR | Zbl
[6] Thömmes G., Pinnau R., Seaïd M., Götz T., Klar A., “Numerical methods and optimal control for glass cooling processes”, Transport Theory Statist. Phys., 31:4–6 (2002), 513–529 | DOI | MR | Zbl
[7] Tse O., Pinnau R., “Optimal control of a simplified natural convection-radiation model”, Commun. Math. Sci., 11:3 (2013), 679–707 | DOI | MR | Zbl
[8] Tse O., Pinnau R., Siedow N., “Identification of temperature dependent parameters in a simplified radiative heat transfer”, Aust. J. Basic Appl. Sci., 5:1 (2011), 7–14
[9] Kovtanyuk A. E., Chebotarev A. Yu., Botkin N. D., Hoffmann K.-H., “Theoretical analysis of an optimal control problem of conductive-convective-radiative heat transfer”, J. Math. Anal. Appl., 412:1 (2014), 520–528 | DOI | MR | Zbl
[10] Grenkin G. V., “Optimalnoe upravlenie v nestatsionarnoi zadache slozhnogo teploobmena”, Dalnevost. matem. zhurnal, 14:2 (2014), 160–172 | Zbl
[11] Grenkin G. V., Chebotarev A. Yu., “Nestatsionarnaya zadacha slozhnogo teploobmena”, Zh. vychisl. matem. i matem. fiz., 54:11 (2014), 1806–1816 | DOI | MR | Zbl
[12] Grenkin G. V., Chebotarev A. Yu., “Ustoichivost statsionarnykh reshenii diffuzionnoi modeli slozhnogo teploobmena”, Dalnevost. matem. zhurnal, 14:1 (2014), 18–32 | MR | Zbl
[13] Grenkin G. V., Chebotarev A. Yu., “Neodnorodnaya nestatsionarnaya zadacha slozhnogo teploobmena”, Sib. elektron. matem. izv., 12 (2015), 562–576 | Zbl
[14] Kovtanyuk A. E., Chebotarev A. Yu., “An iterative method for solving a complex heat transfer problem”, Appl. Math. Comput., 219:17 (2013), 9356–9362 | MR | Zbl
[15] Kovtanyuk A. E., Chebotarev A. Yu., “Statsionarnaya zadacha slozhnogo teploobmena”, Zh. vychisl. matem. i matem. fiz., 54:4 (2014), 711–719 | DOI | MR | Zbl
[16] Kovatnyuk A. E., Chebotarev A. Yu., Botkin N. D., Hoffmann K.-H., “The unique solvability of a complex 3D heat transfer problem”, J. Math. Anal. Appl., 409:2 (2014), 808–815 | DOI | MR
[17] Kovtanyuk A. E., Chebotarev A. Yu., Botkin N. D., Hoffmann K.-H., “Solvability of $\mathrm{P}_1$ approximation of a conductive-radiative heat transfer problem”, Appl. Math. Comput., 249 (2014), 247–252 | MR | Zbl
[18] Kovtanyuk A. E., Chebotarev A. Yu., Botkin N. D., Hoffmann K.-H., “Unique solvability of a steady-state complex heat transfer model”, Commun. Nonlinear Sci. Numer. Simul., 20:3 (2015), 776–784 | DOI | MR | Zbl
[19] Amosov A. A., “Globalnaya razreshimost odnoi nelineinoi nestatsionarnoi zadachi s nelokalnym kraevym usloviem tipa teploobmena izlucheniem”, Differents. ur-niya, 41:1 (2005), 93–104 | MR | Zbl
[20] Amosov A. A., “Nonstationary nonlinear nonlocal problem of radiative-conductive heat transfer in a system of opaque bodies with properties depending on the radiation frequence”, J. Math. Sci., 165:1 (2010), 1–41 | DOI | MR | Zbl
[21] Modest M. F., Radiative Heat Transfer, Academic Press, 2003
[22] Boas D. A., Diffuse photon probes of structural and dynamical properties of turbid media: theory and biomedical applications, A Ph. D. Dissertation in Physics, University of Pennsylvania, 1996 | Zbl