Asymptotically suboptimal control of weakly interconnected dynamical systems
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 10, pp. 1711-1724 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Optimal control problems for a group of systems with weak dynamical interconnections between its constituent subsystems are considered. A method for decentralized control is proposed which distributes the control actions between several controllers calculating in real time control inputs only for theirs subsystems based on the solution of the local optimal control problem. The local problem is solved by asymptotic methods that employ the representation of the weak interconnection by a small parameter. Combination of decentralized control and asymptotic methods allows to significantly reduce the dimension of the problems that have to be solved in the course of the control process.
@article{ZVMMF_2016_56_10_a2,
     author = {N. M. Dmitruk and A. I. Kalinin},
     title = {Asymptotically suboptimal control of weakly interconnected dynamical systems},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1711--1724},
     year = {2016},
     volume = {56},
     number = {10},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_10_a2/}
}
TY  - JOUR
AU  - N. M. Dmitruk
AU  - A. I. Kalinin
TI  - Asymptotically suboptimal control of weakly interconnected dynamical systems
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2016
SP  - 1711
EP  - 1724
VL  - 56
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_10_a2/
LA  - ru
ID  - ZVMMF_2016_56_10_a2
ER  - 
%0 Journal Article
%A N. M. Dmitruk
%A A. I. Kalinin
%T Asymptotically suboptimal control of weakly interconnected dynamical systems
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2016
%P 1711-1724
%V 56
%N 10
%U http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_10_a2/
%G ru
%F ZVMMF_2016_56_10_a2
N. M. Dmitruk; A. I. Kalinin. Asymptotically suboptimal control of weakly interconnected dynamical systems. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 10, pp. 1711-1724. http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_10_a2/

[1] Scattolini R., “Architectures for distributed and hierarchical model predictive control — a review”, J. Proc. Control, 2009, 723–731 | DOI

[2] Camponogara E., Jia D., Krogh B., Talukdar S., “Distributed model predictive control”, IEEE Control Systems Magazine, 22:1 (2002), 44–52 | DOI

[3] Kurzhanskii A. B., “Zadacha upravleniya gruppovym dvizheniem. Obschie sootnosheniya”, Dokl. RAN, 426:1 (2009), 20–25 | MR | Zbl

[4] Keviczky T., Borrelli F., Balas G. J., “Decentralized receding horizon control for large scale dynamically decoupled systems”, Automatica, 42 (2006), 2105–2115 | DOI | MR | Zbl

[5] Richards A., How J. P., “Robust distributed model predictive control”, Int. J. of Control, 80:9 (2007), 1517–1531 | DOI | MR | Zbl

[6] Müller M. A., Reble M., Allgöwer F., “Cooperative control of dynamically decoupled systems via distributed model predictive control”, Int. J. of Robust and Nonlinear Control, 22:12 (2012), 1376–1397 | DOI | MR | Zbl

[7] Dmitruk N. M., “Optimalnoe upravlenie multiagentnymi dinamicheskimi sistemami v usloviyakh neopredelennosti”, Dokl. NAN Belarusi, 58:2 (2014), 11–15

[8] Dmitruk N., “Robust optimal control of dynamically decoupled systems via distributed feedbacks”, Optimization in the Natural Sciences, Springer Communications in Computer and Information Science, 499, 2015, 95–106 | DOI

[9] Jia D., Krogh B., “Min-max feedback model predictive control for distributed control with communication”, Proc. American Control Conference (2002), 4507–4512 | Zbl

[10] Gabasov R., Dmitruk N. M., Kirillova F. M., “Optimalnoe detsentralizovannoe upravlenie gruppoi dinamicheskikh ob'ektov”, Zh. vychisl. matem. i matem. fiz., 48:4 (2008), 593–609 | MR | Zbl

[11] Gabasov R., Dmitruk N. M., Kirillova F. M., “Optimalnoe detsentralizovannoe upravlenie dinamicheskimi sistemami v usloviyakh neopredelennosti”, Zh. vychisl. matem. i matem. fiz., 51:7 (2011), 1209–1227 | MR | Zbl

[12] Kalinin A. I., Asimptoticheskie metody optimizatsii vozmuschennykh dinamicheskikh sistem, UP “Ekoperspektiva”, Minsk, 2000

[13] Gabasov R., Kirillova F. M., “Printsipy optimalnogo upravleniya”, Dokl. NAN Belarusi, 48:1 (2004), 15–18 | MR