@article{ZVMMF_2016_56_10_a13,
author = {A. V. Eremeev and A. V. Kel'manov and A. V. Pyatkin},
title = {On the complexity and approximability of some {Euclidean} optimal summing problems},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1831--1836},
year = {2016},
volume = {56},
number = {10},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_10_a13/}
}
TY - JOUR AU - A. V. Eremeev AU - A. V. Kel'manov AU - A. V. Pyatkin TI - On the complexity and approximability of some Euclidean optimal summing problems JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2016 SP - 1831 EP - 1836 VL - 56 IS - 10 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_10_a13/ LA - ru ID - ZVMMF_2016_56_10_a13 ER -
%0 Journal Article %A A. V. Eremeev %A A. V. Kel'manov %A A. V. Pyatkin %T On the complexity and approximability of some Euclidean optimal summing problems %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2016 %P 1831-1836 %V 56 %N 10 %U http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_10_a13/ %G ru %F ZVMMF_2016_56_10_a13
A. V. Eremeev; A. V. Kel'manov; A. V. Pyatkin. On the complexity and approximability of some Euclidean optimal summing problems. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 10, pp. 1831-1836. http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_10_a13/
[1] Kelmanov A. V., Khamidullin S. A., Kelmanova M. A., “Sovmestnoe obnaruzhenie i otsenivanie povtoryayuschegosya fragmenta v zashumlennoi chislovoi posledovatelnosti pri zadannom chisle kvaziperiodicheskikh povtorov”, Diskretnyi analiz i issledovanie operatsii, Tez. dokl. Rossiiskoi konf. DAOR-4 (Novosibirsk, 2004), 185
[2] Gimadi E. Kh., Kelmanov A. V., Kelmanova M. A., Khamidullin S. A., “Aposteriornoe obnaruzhenie v chislovoi posledovatelnosti kvaziperiodicheskogo fragmenta pri zadannom chisle povtorov”, Sib. zhurnal industr. matem., 9:1(25) (2006), 55–74
[3] Baburin A. E., Gimadi E. Kh., Glebov N. I., Pyatkin A. V., “Zadacha otyskaniya podmnozhestva vektorov s maksimalnym summarnym vesom”, Diskretnyi analiz i issledovanie operatsii. Ser. 2, 14:1 (2007), 32–42 | Zbl
[4] Gimadi E. Kh., Kel'manov A. V., Kel'manova M. A., Khamidullin S. A., “A posteriori detecting a quasiperiodic fragment in a numerical sequence”, Pattern Recognit. and Image Analysis, 18:1 (2008), 30–42 | DOI | MR
[5] Kelmanov A. V., Pyatkin A. V., “O slozhnosti odnogo iz variantov zadachi vybora podmnozhestva “pokhozhikh” vektorov”, Dokl. RAN, 421:5 (2008), 590–592 | Zbl
[6] Kelmanov A. V., Pyatkin A. V., “Ob odnom variante zadachi vybora podmnozhestva vektorov”, Diskretnyi analiz i issledovanie operatsii, 15:5 (2008), 20–34
[7] Kelmanov A. V., Pyatkin A. V., “O slozhnosti nekotorykh zadach vybora podposledovatelnosti vektorov”, Zh. vychisl. matem. i matem. fiz., 52:12 (2012), 2284–2291 | Zbl
[8] Kelmanov A. V., Pyatkin A. V., “O slozhnosti nekotorykh zadach klasternogo analiza vektornykh posledovatelnostei”, Diskretnyi analiz i issledovanie operatsii, 20:2 (2013), 47–57 | MR
[9] Kadets M. I., “Ob odnom svoistve vektornykh lomanykh v $n$-mernom prostranstve”, Uspekhi matem. nauk, 8:1 (1953), 139–143 | MR | Zbl
[10] Pyatkin A. V., “O slozhnosti zadachi vybora podmnozhestva vektorov maksimalnoi summarnoi dliny”, Diskretnyi analiz i issledovanie operatsii, 16:6 (2009), 68–73 | Zbl
[11] Vazirani V. V., Approximation algorithms, Springer, New York, 2001
[12] Baburin A. E., Pyatkin A. V., “O polinomialnykh algoritmakh resheniya odnoi zadachi summirovaniya vektorov”, Diskretnyi analiz i issledovanie operatsii. Seriya 1, 13:2 (2006), 3–10 | MR
[13] Gimadi E. Kh., Glazkov Yu. V., Rykov I. A., “O dvukh zadachakh vybora podmnozhestva vektorov s tselochislennymi koordinatami v evklidovom prostranstve s maksimalnoi normoi summy razmernosti”, Diskretnyi analiz i issledovanie operatsii, 15:4 (2008), 30–43 | MR | Zbl
[14] Sevastyanov S. V., “O zadache kompaktnogo summirovaniya vektorov”, Metody diskretnogo analiza v reshenii ekstremalnykh zadach, Sb. trudov In-ta matem. SO RAN, Izd-vo IM SO RAN, Novosibirsk, 1979, 77–89
[15] Sevastyanov S. V., Geometricheskie metody i effektivnye algoritmy v teorii raspisanii, Dis. ... dokt. fiz.-matem. nauk, In-t matem. SO RAN, Novosibirsk, 2000, 283 pp.
[16] Borisovsky P. A., Eremeev A. V., Grinkevich E. B., Klokov S. A., Vinnikov A. V., “Trading hubs construction for electricity markets”, Optimizat. Energy Industry, eds. Kallrath J., Pardalos P. M., Rebennack S., Scheidt M., Springer, Berlin, 2009, 29–58 | DOI | MR
[17] Garey M. R., Johnson D. S., Computers and intractability: A guide to the theory of NP-Completeness, Freeman, San Francisco, 1979, 314 pp. | MR | Zbl