On a model of thermoviscoelasticity of Jeffreys–Oldroyd type
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 10, pp. 1821-1830 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the plane case, the initial-boundary value problem for a thermoelastic medium model with a rheological relation determined by the Jeffreys–Oldroyd model is shown to be nonlocally weakly solvable. The study is based on separating the system, reducing it to an operator equation, and performing an iterative process.
@article{ZVMMF_2016_56_10_a12,
     author = {V. G. Zvyagin and V. P. Orlov},
     title = {On a model of thermoviscoelasticity of {Jeffreys{\textendash}Oldroyd} type},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1821--1830},
     year = {2016},
     volume = {56},
     number = {10},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_10_a12/}
}
TY  - JOUR
AU  - V. G. Zvyagin
AU  - V. P. Orlov
TI  - On a model of thermoviscoelasticity of Jeffreys–Oldroyd type
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2016
SP  - 1821
EP  - 1830
VL  - 56
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_10_a12/
LA  - ru
ID  - ZVMMF_2016_56_10_a12
ER  - 
%0 Journal Article
%A V. G. Zvyagin
%A V. P. Orlov
%T On a model of thermoviscoelasticity of Jeffreys–Oldroyd type
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2016
%P 1821-1830
%V 56
%N 10
%U http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_10_a12/
%G ru
%F ZVMMF_2016_56_10_a12
V. G. Zvyagin; V. P. Orlov. On a model of thermoviscoelasticity of Jeffreys–Oldroyd type. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 10, pp. 1821-1830. http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_10_a12/

[1] Zvyagin V. G., “O razreshimosti nekotorykh nachalno-kraevykh zadach dlya matematicheskikh modelei dvizheniya nelineino vyazkikh i vyazkouprugikh zhidkostei”, Sovremennaya matematika. Fundamentalnye napravleniya, 2 (2003), 57–69 | MR

[2] Zvyagin V. G., Orlov V. P., “On certain mathematical models in continuum thermomechanics”, J. Fixed Point Theory and Applications, 15:1 (2014), 3–47 | DOI | MR | Zbl

[3] Reiner M., Reologiya, Nauka, M., 1965

[4] Oldroid Dzh. G., Nenyutonovskie techeniya zhidkostei i tverdykh tel. Reologiya, Izd-vo inostr. lit., M., 1962

[5] Oskolkov A. P., “Nachalno-kraevye zadachi dlya uravnenii dvizheniya zhidkostei Kelvina–Foigta i zhidkostei Oldroita”, Tr. MIAN SSSR, 179, 1988, 126–164 | MR

[6] Zvyagin V. G., Vorotnikov D. A., Topological approximation methods for evolutionary problems of nonlinear hydrodynamix, De Gryuter Series in Nonlinear Analysis and Applications, 2008 | MR

[7] Vorotnikov D. A., Zvyagin V. G., “On the existence of weak solutions for the initial-boundary value problem in the Jeffreys model of motion of a viscoelastic medium”, Abstract and Applied Analysis, 2004:10 (2004), 815–829 | DOI | MR | Zbl

[8] Consiglieri L., “Weak solution for a class of non-Newtonian fluids with energy transfer”, J. Math. Fluid Mech., 2 (2000), 267–293 | DOI | MR | Zbl

[9] Consiglieri L., “Friction boundary conditions on thermal incompressible viscous flows”, Annali di Matematica, 187 (2008), 647–665 | DOI | MR | Zbl

[10] Pawlow I., Zajaczkowski W., “Unique solvability of a nonlinear thermoviscoelasticity system arising in shape memory materials”, Discrete and Cont. Dynam. Systems Series S, 4, Special issue on Thermodynamics and Pyase Change (2011), 441–466 | MR | Zbl

[11] Feireisl E., Malek J., “On the Navier–Stokes equations with temperature-dependent transport coefficients”, Differential Equations and Nonlinear Mechanics, 2006, 90616, 14 pp. | MR | Zbl

[12] Zvyagin A. V., Orlov V. P., “Issledovanie razreshimosti zadachi termovyazkouprugosti dlya lineino uprugo-zapazdyvayuschei zhidkosti Foigta”, Matem. zametki, 97:5 (2015), 681–698 | DOI | MR | Zbl

[13] Orlov V. P., Parshin M. I., “Ob odnoi zadache dinamiki termovyazkouprugoi sredy tipa Oldroida”, Izvestiya vuzov. Matematika, 2014, no. 5, 68–74

[14] Orlov V. P., Parshin M. I., “Ob odnoi zadache dinamiki termovyazkouprugoi sredy s pamyatyu”, Zh. vychisl. matem. i matem. fiz., 55:4 (2015), 653–668 | DOI | Zbl

[15] Antontsev S. N., Kazhikhov A. V., Monakhov V. N., Kraevye zadachi mekhaniki neodnorodnykh zhidkostei, Nauka, Novosibirsk, 1983

[16] Tribel Kh., Teoriya interpolyatsii. Funktsionalnye prostranstva. Differentsialnye operatory, Mir, M., 1980 | MR

[17] Temam R., Uravneniya Nave–Stoksa, Mir, M., 1981 | MR

[18] Iosida K., Funktsionalnyi analiz, Mir, M., 2009 | MR

[19] Litvinov V. G., Dvizhenie nelineino-vyazkoi zhidkosti, Nauka, M., 1982 | MR