Simulation of electrochemical machining using the boundary element method with no saturation
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 10, pp. 1810-1820 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The simulation of electrochemical machining (ECM) is based on determining the surface shape at each point in time. The change in the shape of the surface depends on the rate of the electrochemical dissolution of the metal (conducting material), which is assumed to be proportional to the electric field strength on the boundary of the workpiece. The potential of the electric field is a harmonic function outside the two domains–the tool electrode and the workpiece. Constant potentials are specified on the boundaries of the tool electrode and the workpiece. A scheme with no saturation in which the strength of the electric field created by the potential difference on the boundary of the workpiece is proposed. The scheme converges exponentially in the number of grid elements on the workpiece boundary. Given the rate of electrochemical dissolution, the workpiece boundary, which depends on time, is found. The numerical solutions are compared with exact solutions, examples of the ECM simulation are discussed, and the results are compared with those obtained by other numerical methods and the ones obtained using ECM machines.
@article{ZVMMF_2016_56_10_a11,
     author = {A. G. Petrov and Sh. V. Sanduleanu},
     title = {Simulation of electrochemical machining using the boundary element method with no saturation},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1810--1820},
     year = {2016},
     volume = {56},
     number = {10},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_10_a11/}
}
TY  - JOUR
AU  - A. G. Petrov
AU  - Sh. V. Sanduleanu
TI  - Simulation of electrochemical machining using the boundary element method with no saturation
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2016
SP  - 1810
EP  - 1820
VL  - 56
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_10_a11/
LA  - ru
ID  - ZVMMF_2016_56_10_a11
ER  - 
%0 Journal Article
%A A. G. Petrov
%A Sh. V. Sanduleanu
%T Simulation of electrochemical machining using the boundary element method with no saturation
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2016
%P 1810-1820
%V 56
%N 10
%U http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_10_a11/
%G ru
%F ZVMMF_2016_56_10_a11
A. G. Petrov; Sh. V. Sanduleanu. Simulation of electrochemical machining using the boundary element method with no saturation. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 10, pp. 1810-1820. http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_10_a11/

[1] Zhitnikov V. P., Zaitsev A. N., Impulsnaya elektrokhimicheskaya razmernaya obrabotka, Mashinostr., M., 2008

[2] Davydov A. D., Kozak E., Polukarov Yu. M., Vysokoskorostnoe elektrokhimicheskoe formoobrazovanie, Nauka, M., 1990

[3] Mannapov A. R., Zhitnikov V. P., Porechnyi S. S., “Poluempiricheskaya model nestatsionarnogo protsessa impulsnoi elektrokhimicheskoi obrabotki vibriruyuschim elektrodom-instrumentom v lokalno-odnomernom priblizhenii”, Vestnik UGATU, 15:3 (2011), 60–66

[4] Sun C. et al., “Application of FEM to tool design for electrochemical machining freeform surface”, Finite Elements in Analysis and Design, 43:2 (2006), 168–172 | DOI

[5] Purcar M. et al., “3D electrochemical machining computer simulations”, J. Materials Processing Technology, 149:1 (2004), 472–478 | DOI

[6] Volgin V. M., Lyubimov V. V., Davydov A. D., “Modeling and numerical simulation of electrochemical micromachining”, Chemical Engineering Sci., 140 (2016), 252–260 | DOI

[7] Zhitnikov V. P., Muksimova R. R., Zaripov A. A., “Modelirovanie pretsizionnoi nestatsionarnoi elektrokhimicheskoi obrabotki kruglym i plastinchatym elektrod-instrumentom”, Vestnik UGATU, 19:1 (2015), 92–99

[8] Petrov A. G., “Kvadraturnye formuly dlya periodicheskikh funktsii i ikh primenenie v metode granichnykh elementov”, Zh. vychisl. matem. i matem. fiz., 48:8 (2008), 1344–1361 | MR | Zbl

[9] Petrov A. G., Analiticheskaya gidrodinamika, Fizmatlit, M., 2009

[10] Samarskii A. A., Vvedenie v chislennye metody, Nauka, M., 1987 | MR

[11] Qu N. et al., “Wire electrochemical machining with axial electrolyte flushing for titanium alloy”, Chinese J. Aeronautics, 26:1 (2013), 224–229 | DOI

[12] Xiaolong F. et al., “Enhancement of performance of wire electrochemical micromachining using a rotary helical electrode”, J. Materials Proc. Technology, 227 (2016), 129–137 | DOI