@article{ZVMMF_2016_56_10_a10,
author = {A. P. Khromov},
title = {On the convergence of the formal {Fourier} solution of the wave equation with a summable potential},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1795--1809},
year = {2016},
volume = {56},
number = {10},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_10_a10/}
}
TY - JOUR AU - A. P. Khromov TI - On the convergence of the formal Fourier solution of the wave equation with a summable potential JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2016 SP - 1795 EP - 1809 VL - 56 IS - 10 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_10_a10/ LA - ru ID - ZVMMF_2016_56_10_a10 ER -
%0 Journal Article %A A. P. Khromov %T On the convergence of the formal Fourier solution of the wave equation with a summable potential %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2016 %P 1795-1809 %V 56 %N 10 %U http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_10_a10/ %G ru %F ZVMMF_2016_56_10_a10
A. P. Khromov. On the convergence of the formal Fourier solution of the wave equation with a summable potential. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 10, pp. 1795-1809. http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_10_a10/
[1] Burlutskaya M. Sh., Khromov A. P., “Rezolventnyi podkhod v metode Fure”, Dokl. AN, 458:2 (2014), 138–140 | DOI | Zbl
[2] Burlutskaya M. Sh., Khromov A. P., “Rezolventnyi podkhod dlya volnovogo uravneniya”, Zh. vychisl. matem. i matem. fiz., 55:2 (2015), 51–63
[3] Khromov A. P., “O klassicheskom reshenii odnoi smeshannoi zadachi dlya volnovogo uravneniya”, Iz. Sarat. un-ta. Nov. ser. Ser. Matem. Mekhan. Informatika, 15:1 (2015), 56–66 | Zbl
[4] Kornev V. V., Khromov A. P., “Rezolventnyi podkhod k metodu Fure v odnoi smeshannoi zadache dlya volnovogo uravneniya”, Zh. vychisl. matem. i matem. fiz., 55:4 (2015), 621–630 | DOI | Zbl
[5] Kornev V. V., Khromov A. P., “Rezolventnyi podkhod v metode Fure dlya volnovogo uravneniya v nesamosopryazhennom sluchae”, Zh. vychisl. matem. i matem. fiz., 55:7 (2015), 48–59
[6] Naimark M. A., Lineinye differentsialnye operatory, Nauka, M., 1969 | MR
[7] Rasulov M. L., Metod konturnogo integrala, Nauka, M., 1964 | MR
[8] Vagabov A. I., Vvedenie v spektralnuyu teoriyu differentsialnykh operatorov, Izd-vo Rost. un-ta, Rostov n/D., 1994
[9] Krylov A. N., O nekotorykh differentsialnykh uravneniyakh matematicheskoi fiziki, imeyuschikh prilozheniya v tekhnicheskikh voprosakh, GITTL, M.–L., 1950
[10] Danford N., Shvarts Dzh. T., Lineinye operatory. Obschaya teoriya, Izd-vo inostr. lit., M., 1962