On the convergence of the formal Fourier solution of the wave equation with a summable potential
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 10, pp. 1795-1809 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The convergence of the formal Fourier solution to a mixed problem for the wave equation with a summable potential is analyzed under weaker assumptions imposed on the initial position $u(x,0)=\varphi(x)$ than those required for a classical solution up to the case $\varphi(x)\in L_p[0,1]$ for $p>1$. It is shown that the formal solution series always converges and represents a weak solution of the mixed problem.
@article{ZVMMF_2016_56_10_a10,
     author = {A. P. Khromov},
     title = {On the convergence of the formal {Fourier} solution of the wave equation with a summable potential},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1795--1809},
     year = {2016},
     volume = {56},
     number = {10},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_10_a10/}
}
TY  - JOUR
AU  - A. P. Khromov
TI  - On the convergence of the formal Fourier solution of the wave equation with a summable potential
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2016
SP  - 1795
EP  - 1809
VL  - 56
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_10_a10/
LA  - ru
ID  - ZVMMF_2016_56_10_a10
ER  - 
%0 Journal Article
%A A. P. Khromov
%T On the convergence of the formal Fourier solution of the wave equation with a summable potential
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2016
%P 1795-1809
%V 56
%N 10
%U http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_10_a10/
%G ru
%F ZVMMF_2016_56_10_a10
A. P. Khromov. On the convergence of the formal Fourier solution of the wave equation with a summable potential. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 10, pp. 1795-1809. http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_10_a10/

[1] Burlutskaya M. Sh., Khromov A. P., “Rezolventnyi podkhod v metode Fure”, Dokl. AN, 458:2 (2014), 138–140 | DOI | Zbl

[2] Burlutskaya M. Sh., Khromov A. P., “Rezolventnyi podkhod dlya volnovogo uravneniya”, Zh. vychisl. matem. i matem. fiz., 55:2 (2015), 51–63

[3] Khromov A. P., “O klassicheskom reshenii odnoi smeshannoi zadachi dlya volnovogo uravneniya”, Iz. Sarat. un-ta. Nov. ser. Ser. Matem. Mekhan. Informatika, 15:1 (2015), 56–66 | Zbl

[4] Kornev V. V., Khromov A. P., “Rezolventnyi podkhod k metodu Fure v odnoi smeshannoi zadache dlya volnovogo uravneniya”, Zh. vychisl. matem. i matem. fiz., 55:4 (2015), 621–630 | DOI | Zbl

[5] Kornev V. V., Khromov A. P., “Rezolventnyi podkhod v metode Fure dlya volnovogo uravneniya v nesamosopryazhennom sluchae”, Zh. vychisl. matem. i matem. fiz., 55:7 (2015), 48–59

[6] Naimark M. A., Lineinye differentsialnye operatory, Nauka, M., 1969 | MR

[7] Rasulov M. L., Metod konturnogo integrala, Nauka, M., 1964 | MR

[8] Vagabov A. I., Vvedenie v spektralnuyu teoriyu differentsialnykh operatorov, Izd-vo Rost. un-ta, Rostov n/D., 1994

[9] Krylov A. N., O nekotorykh differentsialnykh uravneniyakh matematicheskoi fiziki, imeyuschikh prilozheniya v tekhnicheskikh voprosakh, GITTL, M.–L., 1950

[10] Danford N., Shvarts Dzh. T., Lineinye operatory. Obschaya teoriya, Izd-vo inostr. lit., M., 1962