Irregular trajectories in vakonomic mechanical systems
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 10, pp. 1702-1710 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In his works, V.V. Kozlov proposed a mathematical model for the dynamics of a mechanical system with nonintegrable constraints, which was called vakonomic. In contrast to the then conventional nonholonomic model, trajectories in the vakonomic model satisfy necessary conditions for a minimum in a variational problem with equality constraints. We consider the so-called irregular case of this variational problem, which was not covered by Kozlov, when the trajectory is a singular point of the constraints and the necessary minimum conditions based on the Lagrange principle make no sense. This situation is studied using the theory of abnormal problems developed by the first author. As a result, the classical necessary minimum conditions are strengthened and developed to this class of problems.
@article{ZVMMF_2016_56_10_a1,
     author = {E. R. Avakov and V. G. Oleinikov},
     title = {Irregular trajectories in vakonomic mechanical systems},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1702--1710},
     year = {2016},
     volume = {56},
     number = {10},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_10_a1/}
}
TY  - JOUR
AU  - E. R. Avakov
AU  - V. G. Oleinikov
TI  - Irregular trajectories in vakonomic mechanical systems
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2016
SP  - 1702
EP  - 1710
VL  - 56
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_10_a1/
LA  - ru
ID  - ZVMMF_2016_56_10_a1
ER  - 
%0 Journal Article
%A E. R. Avakov
%A V. G. Oleinikov
%T Irregular trajectories in vakonomic mechanical systems
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2016
%P 1702-1710
%V 56
%N 10
%U http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_10_a1/
%G ru
%F ZVMMF_2016_56_10_a1
E. R. Avakov; V. G. Oleinikov. Irregular trajectories in vakonomic mechanical systems. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 10, pp. 1702-1710. http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_10_a1/

[1] Ioffe A. D., Tikhomirov V. M., Teoriya ekstremalnykh zadach, Nauka, M., 1974

[2] Bliss G. A., Lektsii po variatsionnomu ischisleniyu, Inostrannaya literatura, M., 1950

[3] Avakov E. R., “Usloviya ekstremuma dlya gladkikh zadach s ogranicheniyami tipa ravenstv”, Zh. vychisl. matem. i matem. fiz., 25:5 (1985), 680–693 | MR | Zbl

[4] Avakov E. R., “Neobkhodimye usloviya ekstremuma dlya gladkikh anormalnykh zadach s ogranicheniyami tipa ravenstv i neravenstv”, Matem. zametki, 45:6 (1989), 3–11

[5] Avakov E. R., “Neobkhodimye usloviya pervogo poryadka dlya anormalnykh zadach variatsionnogo ischisleniya”, Obykn. diff. uravneniya, 26:5 (1990), 739–745 | MR

[6] Chaplygin S. A., Issledovaniya po dinamike negolonomnykh sistem, GITTL, M.–L., 1949

[7] Kozlov V. V., “Dinamika sistem s neintegriruemymi svyazyami”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 1982, no. 3, 92–100

[8] Kozlov V. V., “Dinamika sistem s neintegriruemymi svyazyami”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 1982, no. 4, 70–76

[9] Kozlov V. V., “Dinamika sistem s neintegriruemymi svyazyami”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 1983, no. 3, 102–111