On polyhedral approximations in an $n$-dimensional space
    
    
  
  
  
      
      
      
        
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 10, pp. 1695-1701
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              The polyhedral approximation of a positively homogeneous (and, in general, nonconvex) function on a unit sphere is investigated. Such a function is presupporting (i.e., its convex hull is the supporting function) for a convex compact subset of $R^n$. The considered polyhedral approximation of this function provides a polyhedral approximation of this convex compact set. The best possible estimate for the error of the considered approximation is obtained in terms of the modulus of uniform continuous subdifferentiability in the class of a priori grids of given step in the Hausdorff metric.
            
            
            
          
        
      @article{ZVMMF_2016_56_10_a0,
     author = {M. V. Balashov},
     title = {On polyhedral approximations in an $n$-dimensional space},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1695--1701},
     publisher = {mathdoc},
     volume = {56},
     number = {10},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_10_a0/}
}
                      
                      
                    TY - JOUR AU - M. V. Balashov TI - On polyhedral approximations in an $n$-dimensional space JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2016 SP - 1695 EP - 1701 VL - 56 IS - 10 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_10_a0/ LA - ru ID - ZVMMF_2016_56_10_a0 ER -
M. V. Balashov. On polyhedral approximations in an $n$-dimensional space. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 10, pp. 1695-1701. http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_10_a0/
