On polyhedral approximations in an $n$-dimensional space
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 10, pp. 1695-1701 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The polyhedral approximation of a positively homogeneous (and, in general, nonconvex) function on a unit sphere is investigated. Such a function is presupporting (i.e., its convex hull is the supporting function) for a convex compact subset of $R^n$. The considered polyhedral approximation of this function provides a polyhedral approximation of this convex compact set. The best possible estimate for the error of the considered approximation is obtained in terms of the modulus of uniform continuous subdifferentiability in the class of a priori grids of given step in the Hausdorff metric.
@article{ZVMMF_2016_56_10_a0,
     author = {M. V. Balashov},
     title = {On polyhedral approximations in an $n$-dimensional space},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1695--1701},
     year = {2016},
     volume = {56},
     number = {10},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_10_a0/}
}
TY  - JOUR
AU  - M. V. Balashov
TI  - On polyhedral approximations in an $n$-dimensional space
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2016
SP  - 1695
EP  - 1701
VL  - 56
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_10_a0/
LA  - ru
ID  - ZVMMF_2016_56_10_a0
ER  - 
%0 Journal Article
%A M. V. Balashov
%T On polyhedral approximations in an $n$-dimensional space
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2016
%P 1695-1701
%V 56
%N 10
%U http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_10_a0/
%G ru
%F ZVMMF_2016_56_10_a0
M. V. Balashov. On polyhedral approximations in an $n$-dimensional space. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 10, pp. 1695-1701. http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_10_a0/

[1] Polovinkin E. S., Balashov M. V., Elementy vypuklogo i silno vypuklogo analiza, Izd. 2-e, Fizmatlit, M., 2007

[2] Rokafellar R., Vypuklyi analiz, Mir, M., 1973

[3] Polovinkin E. S., “Silno vypuklyi analiz”, Matem. sb., 187:2 (1996), 103–130 | DOI | MR | Zbl

[4] Orlova G. B., Silin D. B., “Priblizhennoe vychislenie vypukloi obolochki dlya polozhitelno odnorodnoi funktsii”, Vestnik MGU. Ser. 15. Vychisl. matem. i kibernetika, 1997, no. 2, 32–35

[5] Polovinkin E. S., Ivanov G. E., Balashov M. V., Konstantinov R. V., Khorev A. V., “Ob odnom algoritme chislennogo resheniya lineinykh differentsialnykh igr”, Matem. sb., 192:10 (2001), 95–122 | DOI

[6] Pontryagin L. S., “Lineinye differentsialnye igry presledovaniya”, Matem. sb., 112(154):3(7) (1980), 307–330 | MR | Zbl

[7] Bronshtein E. M., “Approksimatsiya vypuklykh mnozhestv mnogogrannikami”, Geometriya. Sovr. matem. fund. napr., 22, RUDN, M., 2007, 5–37 | Zbl

[8] Gruber P. M., “Aspects of approximation of convex bodies”, Handbook of convex geometry, Ch. 1.10, eds. P. M. Gruber, J. M. Wills, Elsevier Sci. Publishers B. V., 1993, 321–345 | MR

[9] Kamenev G. K., Chislennoe issledovanie effektivnosti metodov poliedralnoi approksimatsii vypuklykh tel, Izd-vo VTs RAN, M., 2010

[10] Balashov M. V., Repovs D., “Polyhedral approximations of strictly convex compacta”, J. Math. Anal. Appl., 374:2 (2011), 529–537 | DOI | MR | Zbl