Parameter-free method for computing the turbulent flow in a plane channel in a wide range of Reynolds numbers
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 55 (2015) no. 9, pp. 1545-1558 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Near-wall turbulence in a plane channel at high Reynolds numbers is studied by applying direct numerical simulation. A new numerical algorithm is proposed in which convective fluxes are explicitly approximated using the CABARET scheme and two grid elliptic equations are solved in order to satisfy the incompressibility condition. The equations are of high dimension and are solved by employing a fast direct method that can be efficiently parallelized. In contrast to most methods, including spectral ones, the CABARET scheme does not involve any tuning parameters. It has a compact stencil, which simplifies setting boundary conditions and improves the efficiency of parallelization in computations on multiprocessor computer systems. Numerical results are obtained in a wide range of Reynolds numbers and are compared with experimental data and numerical results of other authors. The error in the computed drag coefficient for turbulent flow is examined as a function of grid characteristics.
@article{ZVMMF_2015_55_9_a9,
     author = {D. G. Asfandiyarov and V. M. Goloviznin and S. A. Finogenov},
     title = {Parameter-free method for computing the turbulent flow in a plane channel in a wide range of {Reynolds} numbers},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1545--1558},
     year = {2015},
     volume = {55},
     number = {9},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_9_a9/}
}
TY  - JOUR
AU  - D. G. Asfandiyarov
AU  - V. M. Goloviznin
AU  - S. A. Finogenov
TI  - Parameter-free method for computing the turbulent flow in a plane channel in a wide range of Reynolds numbers
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2015
SP  - 1545
EP  - 1558
VL  - 55
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_9_a9/
LA  - ru
ID  - ZVMMF_2015_55_9_a9
ER  - 
%0 Journal Article
%A D. G. Asfandiyarov
%A V. M. Goloviznin
%A S. A. Finogenov
%T Parameter-free method for computing the turbulent flow in a plane channel in a wide range of Reynolds numbers
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2015
%P 1545-1558
%V 55
%N 9
%U http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_9_a9/
%G ru
%F ZVMMF_2015_55_9_a9
D. G. Asfandiyarov; V. M. Goloviznin; S. A. Finogenov. Parameter-free method for computing the turbulent flow in a plane channel in a wide range of Reynolds numbers. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 55 (2015) no. 9, pp. 1545-1558. http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_9_a9/

[1] Moin P., Kim J., “Numerical investigation of turbulent channel flow”, J. Fluid Mech., 119 (1982), 341–377 | DOI

[2] Kim J., Moin P., Moser R. D., “Turbulence statistics in fully developed channel ow at low Reynolds number”, J. Fluid Mech., 177 (1987), 133–166 | DOI | Zbl

[3] Fletcher K., Chislennye metody na osnove metoda Galerkina, Mir, M., 1988

[4] Moser R. D., Kim J., Mansour N. N., “Direct numerical simulation of turbulent channel flow up to $\mathrm{Re}_\tau=590$”, Phys. Fluids, 11:4 (1999), 943–945 | DOI | Zbl

[5] del'Alamo J. C., Jim'enez J., “Spectra of very large anisotropic scales in turbulent channels”, Phys. Fluids, 15 (2003), 41–44

[6] del'Alamo J. C., Jim'enez J., Zandonade P., Moser R. D., “Scaling of the energy spectra of turbulent channels”, J. Fluid Mech., 500 (2004), 135–144 | DOI | MR

[7] Hoyas S., Jim'enez J., “Scaling of the velocity uctuations in turbulent channels up to $\mathrm{Re}_\tau=2003$”, Phys. Fluids, 18 (2006), 011702 | DOI

[8] Abe H., Kawamura H., Matsuo Y., “Direct numerical simulation of fully developed turbulent channel ow with respect to the Reynolds number dependence”, J. Fluids Engng., 123 (2001), 382–393 | DOI

[9] Keyes D., Ecer A., Satofuka N., Fox P., Periaux J., Parallel computational fluid dynamics: towards teraflops. Optimization and novel formulations, North-Holland, Netherlands, 2000

[10] Moin P., Mahesh K., “Direct Numerical Simulation: a tool in turbulence research”, Annu. Rev. Fluid. Mech., 30 (1998), 539–578 | DOI | MR

[11] Boyd J. P., Chebyshev and fourier spectral methods, second revised edition, Dover Publications, USA, 2001 | MR | Zbl

[12] Zang T. A., Krist S. E., Hussaini M. Y., “Resolution requirements for numerical simulation of transition”, J. Sci. Comput., 4:2 (1989), 197–217 | DOI | MR

[13] Uhlmann M., The need for de-aliasing in a Chebyshev pseudo-spectral method, PIK rept. No 60, 2000, 23 pp.

[14] Canuto C., Hussaini M. Y., Quarteroni A., Zang T. A., Spectral methods: fundamentals in single domains, Springer, Berlin, 2007 | MR

[15] Sorokovikova O. S., “O nelineinoi neustoichivosti i preimuschestvakh polnostyu konservativnoi approksimatsii konvektivnykh potokov v zadachakh gazovoi dinamiki”, Matem. modelirovanie, 5:10 (1993), 106–113

[16] Goloviznin V. M., Zaitsev M. A., Karabasov S. A., Korotkin I. A., Novye algoritmy vychislitelnoi gidrodinamiki dlya mnogoprotsessornykh vychislitelnykh kompleksov, Monografiya, Izd-vo MGU, M., 2013

[17] Goloviznin V. M., Karabasov S. A., Korotkin I. A., Sorokovikova O. S., “Nadsetochnoe modelirovanie odnorodnoi izotropnoi turbulentnosti v odnomernom i dvumernom sluchayakh”, Fundamentalnye problemy modelirovaniya turbulentnykh techenii i dvukhfaznykh techenii, v. 2, Akademizdat, M., 2010, 60–137

[18] Goloviznin V. M., Glotov V. Yu., Danilin A. V., Korotkin I. A., Karabasov S. A., “Modelirovanie turbulentnykh techenii po skheme KABARE v dvumernoi i trekhmernoi neszhimaemoi zhidkosti”, Fundamentalnye problemy modelirovaniya turbulentnykh techenii i dvukhfaznykh techenii, v. 3, Komtekhprint, M., 2012, 113–185

[19] Goloviznin V. M., Karabasov S. A., Korotkin I. A., Finogenov S. A., “Novyi besparametricheskii vychislitelnyi metod pryamogo modelirovaniya termokonvektivnykh techenii v zamknutykh dvumernykh i trekhmernykh oblastyakh”, Fundamentalnye problemy modelirovaniya turbulentnykh techenii i dvukhfaznykh techenii, v. 3, Komtekhprint, M., 2012, 186–242

[20] Goloviznin V. M., Glotov V. Yu., “Modelirovanie odnorodnoi izotropnoi turbulentnosti po skheme KABARE”, Tikhonovskie chteniya, Sb. tezisov dokl. nauchn. konf., MAKS Press, M., 2013, 84

[21] Glotov V. Yu., Goloviznin V. M., “Skhema KABARE dlya neszhimaemoi zhidkosti v peremennykh skorost-davlenie”, Sovremennye problemy fundamentalnykh i prikladnykh nauk, Tr. 53-i nauchnoi konferentsii MFTI, v. VIII, Probl. sovremennoi fiz., MFTI, M., 2010, 119–121

[22] Glotov V. Yu., Skhema KABARE dlya trekhmernoi neszhimaemoi zhidkosti, Preprint No IBRAE-2011-03, IBRAE RAN, M., 2011

[23] Glotov V. Yu., “Skhema KABARE dlya neszhimaemoi zhidkosti”, Sovremennye problemy matematicheskogo modelirovaniya, Tr. XIV molodezhnoi konferentsii-shkoly s mezhdunarodnym uchastiem, Izd-vo Yuzhnogo federalnogo un-ta, Rostov-na-Donu, 2011, 96–101

[24] Glotov V. Yu., Skhema KABARE dlya dvukhurovnevoi tekhnologii raschetov zadach fluktuatsionnoi gidrodinamiki, Preprint No IBRAE-2013-03, IBRAE RAN, M., 2013

[25] Glotov V. Yu., Goloviznin V. M., “Skhema KABARE dlya dvumernoi neszhimaemoi zhidkosti v peremennykh davlenie-skorost”, Zh. vychisl. matem. i matem. fiz., 53:6 (2013), 721–735 | MR | Zbl

[26] Goloviznin V. M., Glotov V. Yu., Markesteijn A. P., Karabasov S. A., “Computational modeling of multiscale problems of fluctuating hydrodynamics”, Superkompyuternye tekhnologii matem. modelirovaniya, Tez. dokl., Izdatelskii dom SVFU, Yakutsk, 2013, 29

[27] Glotov V. Yu., Goloviznin V. M., Karabasov S. A., Markeshtein A. P., “Matematicheskoe modelirovanie zadach fluktuatsionnoi gidrodinamiki s ispolzovaniem algoritmov sleduyuschego pokoleniya”, 11-yi Mezhdunar. Mezhdistsiplinarnyi Seminar LPpM3-XI, Sb. tezisov (Budva, 2013), 44

[28] Glotov V. Yu., Goloviznin V. M., “Skhema KABARE dlya dvumernoi neszhimaemoi zhidkosti v peremennykh zavikhrennost-funktsiya toka”, Matem. modelirovanie, 23:9 (2011), 89–104 | Zbl

[29] Samarskii A. A., Nikolaev E. S., Metody resheniya setochnykh uravnenii, Nauka, M., 1978 | MR

[30] Kuznetsov Yu. A., “Chislennye metody v podprostranstve”, Vychisl. protsessy i sistemy, 2 (1985), 265–350 | Zbl

[31] Finogenov S. A., Kuznetsov Yu. A., “Two-stage fictitious components method for solving the Dirichlet boundary value problem”, Sov. J. Numer. Anal. Math. Modelling, 3:4 (1988), 301–323 | DOI | MR | Zbl

[32] Akimova E. N., Belousov D. V., “Parallelnye algoritmy resheniya SLAU s blochno-trekhdiagonalnymi matritsami na mnogoprotsessornykh vychislitelyakh”, Vestn. UGATU, 15:5(45) (2011), 87–93 | Zbl

[33] Schultz M. P., Flack K. A., “Reynolds-number scaling of turbulent channel flow”, Phys. Fluids, 25 (2013), 025104 | DOI

[34] Patel V. C., Head M. R., “Some observations on skin friction and velocity profiles in fully developed pipe and channel flow”, J. Fluid Mech., 38 (1969), 181–201 | DOI

[35] Dean R. B., “Reynolds number dependence of skin friction and other bulk flow variables in two-dimensional rectangular duct flow”, Trans. ASME: J. Fluids Engng., 100:2 (1978), 215–223 | DOI

[36] Zanoun E.-S., Nagib H., Durst F., “Refined $C_f$ relation for turbulent channels and consequences for high-Re experiments”, Fluid Dyn., 41 (2009), 021405 | DOI | Zbl

[37] Laadhari F., “Reynolds number effect on the dissipation function in wall-bounded flows”, Physics of Fluids, 19:3 (2007), 038101 | DOI | Zbl

[38] Tsukahara T., Seki Y., Kawamura H., Tochio D., “DNS of turbulent channel flow at very low Reynolds number”, $4^{\mathrm th}$ Int. Symp. on Turbulence and Shear Flow Phenomena (Williamsburg, VA, USA, Jun. 27–29, 2005), 935–940

[39] Iwamoto K., Suzuki Y., Kasagi N., “Reynolds number effect on wall turbulence: toward effective feedback control”, Int. J. of Heat and Fluid Flow, 23 (2002), 678–689 | DOI | MR

[40] Tanahashi M., Kangand S.-J., Miyamoto T., Shiokawa S., Miyauchi T., “Scaling law of fine scale eddies in turbulent channel flows up to $\mathrm{Re}_\tau=800$”, Int. J. of Heat and Fluid Flow, 25 (2004), 331–340 | DOI