An extension of the gradient projection method and Newton's method to extremum problems constrained by a smooth surface
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 55 (2015) no. 9, pp. 1493-1502 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The gradient projection method and Newton’s method are extended to the case where the constraints are nonconvex and are represented by a smooth surface. Necessary extremum conditions and the convergence of the methods are examined.
@article{ZVMMF_2015_55_9_a4,
     author = {Yu. A. Chernyaev},
     title = {An extension of the gradient projection method and {Newton's} method to extremum problems constrained by a smooth surface},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1493--1502},
     year = {2015},
     volume = {55},
     number = {9},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_9_a4/}
}
TY  - JOUR
AU  - Yu. A. Chernyaev
TI  - An extension of the gradient projection method and Newton's method to extremum problems constrained by a smooth surface
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2015
SP  - 1493
EP  - 1502
VL  - 55
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_9_a4/
LA  - ru
ID  - ZVMMF_2015_55_9_a4
ER  - 
%0 Journal Article
%A Yu. A. Chernyaev
%T An extension of the gradient projection method and Newton's method to extremum problems constrained by a smooth surface
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2015
%P 1493-1502
%V 55
%N 9
%U http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_9_a4/
%G ru
%F ZVMMF_2015_55_9_a4
Yu. A. Chernyaev. An extension of the gradient projection method and Newton's method to extremum problems constrained by a smooth surface. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 55 (2015) no. 9, pp. 1493-1502. http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_9_a4/

[1] Zabotin V. I., Chernyaev Yu. A., “Obobschenie metoda proektsii gradienta na ekstremalnye zadachi s predvypuklymi ogranicheniyami”, Zh. vychisl. matem. i matem. fiz., 41:3 (2001), 367–373 | MR | Zbl

[2] Chernyaev Yu. A., “Ob odnom chislennom algoritme resheniya ekstremalnykh zadach s predvypuklymi ogranicheniyami”, Zh. vychisl. matem. i matem. fiz., 43:2 (2003), 169–175 | MR | Zbl

[3] Chernyaev Yu. A., “Dva algoritma resheniya zadachi matematicheskogo programmirovaniya s predvypuklymi ogranicheniyami”, Zh. vychisl. matem. i matem. fiz., 44:7 (2004), 1229–1233 | MR | Zbl

[4] Chernyaev Yu. A., “Skhodimost metoda proektsii gradienta dlya odnogo klassa nevypuklykh zadach matematicheskogo programmirovaniya”, Izvestiya vuzov. Matematika, 2005, no. 12(523), 76–79

[5] Zabotin V. I., Chernyaev Yu. A., “Skhodimost iteratsionnogo metoda resheniya zadachi matematicheskogo programmirovaniya s ogranicheniem v vide vypukloi gladkoi poverkhnosti”, Zh. vychisl. matem. i matem. fiz., 44:4 (2004), 609–612 | MR | Zbl

[6] Dulliev A. M., “Relaksatsionnyi metod minimizatsii gladkoi funktsii na obobschennom segmente sfery”, Zh. vychisl. matem. i matem. fiz., 54:2 (2014), 208–223 | DOI | Zbl

[7] Chernyaev Yu. A., “Obobschenie metoda Nyutona na klass nevypuklykh zadach matematicheskogo programmirovaniya”, Izvestiya vuzov. Matematika, 2008, no. 1(548), 78–82

[8] Chernyaev Yu. A., “Metod Nyutona dlya ekstremalnykh zadach s ogranicheniem v vide vypukloi gladkoi poverkhnosti”, Zh. vychisl. matem. i matem. fiz., 52:2 (2012), 224–230 | MR | Zbl

[9] Dulliev A. M., Zabotin V. I., “Iteratsionnyi algoritm proektirovaniya tochki na nevypukloe mnogoobrazie v lineinom normirovannom prostranstve”, Zh. vychisl. matem. i matem. fiz., 44:5 (2004), 827–830 | MR | Zbl

[10] Zabotin V. I., Arutyunova N. K., “Dva algoritma otyskaniya proektsii tochki na nevypukloe mnozhestvo v normirovannom prostranstve”, Zh. vychisl. matem. i matem. fiz., 53:3 (2013), 344–349 | DOI | MR | Zbl

[11] Arutyunova N. K., Dulliev A. M., Zabotin V. I., “Algoritmy proektirovaniya tochki na poverkhnost urovnya nepreryvnoi na kompakte funktsii”, Zh. vychisl. matem. i matem. fiz., 54:9 (2014), 1448–1454 | DOI

[12] Vasilev F. P., Chislennye metody resheniya ekstremalnykh zadach, Nauka, M., 1980 | MR

[13] Khimmelblau D., Prikladnoe nelineinoe programmirovanie, Mir, M., 1975

[14] Bertsekas D., Uslovnaya optimizatsiya i metody mnozhitelei Lagranzha, Radio i svyaz, M., 1987 | MR

[15] Golshtein E. G., Tretyakov N. V., Modifitsirovannye funktsii Lagranzha: Teoriya i metody optimizatsii, Nauka, M., 1989 | MR

[16] Golikov A. I., Zhadan V. G., “Iterativnye metody resheniya zadach nelineinogo programmirovaniya s ispolzovaniem modifitsirovannykh funktsii Lagranzha”, Zh. vychisl. matem. i matem. fiz., 20:4 (1980), 874–888 | MR

[17] Zhadan V. G., “Modifitsirovannye funktsii Lagranzha v nelineinom programmirovanii”, Zh. vychisl. matem. i matem. fiz., 22:2 (1982), 296–308 | MR | Zbl

[18] Pshenichnyi B. N., Danilin Yu. M., Chislennye metody v ekstremalnykh zadachakh, Nauka, M., 1975 | MR

[19] Pshenichnyi B. N., Sobolenko L. A., “Uskorenie skhodimosti metoda linearizatsii dlya zadachi uslovnoi minimizatsii”, Zh. vychisl. matem. i matem. fiz., 20:3 (1980), 605–614 | MR | Zbl

[20] Golikov A. I., Zhadan V. G., “Dve modifikatsii metoda linearizatsii v nelineinom programmirovanii”, Zh. vychisl. matem. i matem. fiz., 23:2 (1983), 314–325 | MR | Zbl