An extension of the gradient projection method and Newton's method to extremum problems constrained by a smooth surface
    
    
  
  
  
      
      
      
        
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 55 (2015) no. 9, pp. 1493-1502
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              The gradient projection method and Newton’s method are extended to the case where the constraints are nonconvex and are represented by a smooth surface. Necessary extremum conditions and the convergence of the methods are examined.
            
            
            
          
        
      @article{ZVMMF_2015_55_9_a4,
     author = {Yu. A. Chernyaev},
     title = {An extension of the gradient projection method and {Newton's} method to extremum problems constrained by a smooth surface},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1493--1502},
     publisher = {mathdoc},
     volume = {55},
     number = {9},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_9_a4/}
}
                      
                      
                    TY - JOUR AU - Yu. A. Chernyaev TI - An extension of the gradient projection method and Newton's method to extremum problems constrained by a smooth surface JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2015 SP - 1493 EP - 1502 VL - 55 IS - 9 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_9_a4/ LA - ru ID - ZVMMF_2015_55_9_a4 ER -
%0 Journal Article %A Yu. A. Chernyaev %T An extension of the gradient projection method and Newton's method to extremum problems constrained by a smooth surface %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2015 %P 1493-1502 %V 55 %N 9 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_9_a4/ %G ru %F ZVMMF_2015_55_9_a4
Yu. A. Chernyaev. An extension of the gradient projection method and Newton's method to extremum problems constrained by a smooth surface. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 55 (2015) no. 9, pp. 1493-1502. http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_9_a4/
