An extension of the gradient projection method and Newton's method to extremum problems constrained by a smooth surface
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 55 (2015) no. 9, pp. 1493-1502

Voir la notice de l'article provenant de la source Math-Net.Ru

The gradient projection method and Newton’s method are extended to the case where the constraints are nonconvex and are represented by a smooth surface. Necessary extremum conditions and the convergence of the methods are examined.
@article{ZVMMF_2015_55_9_a4,
     author = {Yu. A. Chernyaev},
     title = {An extension of the gradient projection method and {Newton's} method to extremum problems constrained by a smooth surface},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1493--1502},
     publisher = {mathdoc},
     volume = {55},
     number = {9},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_9_a4/}
}
TY  - JOUR
AU  - Yu. A. Chernyaev
TI  - An extension of the gradient projection method and Newton's method to extremum problems constrained by a smooth surface
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2015
SP  - 1493
EP  - 1502
VL  - 55
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_9_a4/
LA  - ru
ID  - ZVMMF_2015_55_9_a4
ER  - 
%0 Journal Article
%A Yu. A. Chernyaev
%T An extension of the gradient projection method and Newton's method to extremum problems constrained by a smooth surface
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2015
%P 1493-1502
%V 55
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_9_a4/
%G ru
%F ZVMMF_2015_55_9_a4
Yu. A. Chernyaev. An extension of the gradient projection method and Newton's method to extremum problems constrained by a smooth surface. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 55 (2015) no. 9, pp. 1493-1502. http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_9_a4/