On estimates for solutions of systems of convex inequalities
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 55 (2015) no. 9, pp. 1486-1492 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The distance from a given point to the solution set of a system of strict and nonstrict inequalities described by convex functions is estimated. As consequences, estimates for the distance from a given point to the Lebesgue set of a convex function are obtained and sufficient conditions for convex-valued set-valued mappings to be covering are established.
@article{ZVMMF_2015_55_9_a3,
     author = {A. V. Arutyunov and S. E. Zhukovskiy},
     title = {On estimates for solutions of systems of convex inequalities},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1486--1492},
     year = {2015},
     volume = {55},
     number = {9},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_9_a3/}
}
TY  - JOUR
AU  - A. V. Arutyunov
AU  - S. E. Zhukovskiy
TI  - On estimates for solutions of systems of convex inequalities
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2015
SP  - 1486
EP  - 1492
VL  - 55
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_9_a3/
LA  - ru
ID  - ZVMMF_2015_55_9_a3
ER  - 
%0 Journal Article
%A A. V. Arutyunov
%A S. E. Zhukovskiy
%T On estimates for solutions of systems of convex inequalities
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2015
%P 1486-1492
%V 55
%N 9
%U http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_9_a3/
%G ru
%F ZVMMF_2015_55_9_a3
A. V. Arutyunov; S. E. Zhukovskiy. On estimates for solutions of systems of convex inequalities. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 55 (2015) no. 9, pp. 1486-1492. http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_9_a3/

[1] Vasilev F. P., Ivanitskii A. Yu., Lineinoe programmirovanie, Faktorial, M., 1998 | MR

[2] Alekseev V. M., Tikhomirov V. M., Fomin S. V., Optimalnoe upravlenie, Nauka, M., 1979 | MR

[3] Izmailov A. F., Solodov M. F., Chislennye metody optimizatsii, Fizmatlit, M., 2005

[4] Pang J.-Sh., “Error bounds in mathematical programming”, Math. Programming, 79 (1997), 299–332 | MR | Zbl

[5] Facchinei F., Pang J.-Sh., Finite-dimentional variational inequalities and complementary problems, Springer, New York, 2003

[6] Ter-Krikorov A. M., “Vypukloe programmirovanie v prostranstve, sopryazhennom prostranstvu Banakha, i vypuklye zadachi optimalnogo upravleniya s fazovymi ogranicheniyami”, Zh. vychisl. matem. i matem. fiz., 16:2 (1976), 351–358 | MR | Zbl

[7] Arutyunov A. V., “Nakryvayuschie otobrazheniya v metricheskikh prostranstvakh i nepodvizhnye tochki”, Dokl. AN, 416:2 (2007), 151–155 | MR | Zbl

[8] Arutyunov A. V., “Iteratsionnyi metod nakhozhdeniya tochek sovpadeniya dvukh otobrazhenii”, Zh. vychisl. matem. i matem. fiz., 52:1 (2012), 1947–1950 | Zbl

[9] Lewis A. S., Pang J.-S., “Error bounds for convex inequality systems”, Proc. fifth Internat. Symposium of Generalized Convexity (Luminy, 1996)

[10] Mangasarian O. L., Error bounds for nondifferentiable convex inequalities under a strong slater constrait qualification, Math. Programming Technical Report 96-04, Computer Science Department, University of Wisconsin-Madison, July 1996 | MR

[11] Vasilev F. P., Metody optimizatsii, Faktorial Press, M., 2002

[12] Ioffe A. D., Tikhomirov V. M., Teoriya ekstremalnykh zadach, Nauka, M., 1974 | MR

[13] Zalmai G. J., “A continuous-time generalization of Gordan's transposition theorem”, J. Math. Anal. Appl., 110 (1985), 130–140 | DOI | MR | Zbl