@article{ZVMMF_2015_55_9_a2,
author = {A. Zh. Zhubanysheva and N. Temirgaliev},
title = {Informative cardinality of trigonometric {Fourier} coefficients and their limiting error in the discretization of a differentiation operator in multidimensional {Sobolev} classes},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1474--1485},
year = {2015},
volume = {55},
number = {9},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_9_a2/}
}
TY - JOUR AU - A. Zh. Zhubanysheva AU - N. Temirgaliev TI - Informative cardinality of trigonometric Fourier coefficients and their limiting error in the discretization of a differentiation operator in multidimensional Sobolev classes JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2015 SP - 1474 EP - 1485 VL - 55 IS - 9 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_9_a2/ LA - ru ID - ZVMMF_2015_55_9_a2 ER -
%0 Journal Article %A A. Zh. Zhubanysheva %A N. Temirgaliev %T Informative cardinality of trigonometric Fourier coefficients and their limiting error in the discretization of a differentiation operator in multidimensional Sobolev classes %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2015 %P 1474-1485 %V 55 %N 9 %U http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_9_a2/ %G ru %F ZVMMF_2015_55_9_a2
A. Zh. Zhubanysheva; N. Temirgaliev. Informative cardinality of trigonometric Fourier coefficients and their limiting error in the discretization of a differentiation operator in multidimensional Sobolev classes. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 55 (2015) no. 9, pp. 1474-1485. http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_9_a2/
[1] Temirgaliev N., Sherniyazov K. E., Berikkhanova M. E., “Tochnye poryadki kompyuternykh (vychislitelnykh) poperechnikov v zadachakh vosstanovleniya funktsii i diskretizatsii reshenii uravneniya Kleina–Gordona po koeffitsientam Fure”, Matematika i informatika, K 75-letiyu so dnya rozhdeniya Anatoliya Alekseevicha Karatsuby, Sovremennye problemy matematiki, 17, MIAN, M., 2013, 179–207 | DOI | Zbl
[2] Temirgaliev N., Abikenova Sh. K., Zhubanysheva A. Zh., Taugynbaeva G. E., “Zadachi diskretizatsii reshenii volnovogo uravneniya, chislennogo differentsirovaniya i vosstanovleniya funktsii v kontekste kompyuternogo (vychislitelnogo) poperechnika”, Izv. VUZov. Matematika, 2013, no. 8, 86–93
[3] Temirgaliev N., “Kompyuternyi (vychislitelnyi) poperechnik kak sintez izvestnogo i novogo v chislennom analize”, Vestn. ENU im. L. N. Gumileva, 2014, no. 4(101), 16–33
[4] Plaskota L., Noisy information and computational complexity, University Press, Cambridge, 1996, 308 pp. | MR | Zbl
[5] Novak E., Wózniakowski H., Tractability of multivariate problems, v. I, EMS Tracts Math., 6, Linear information, European Math. Soc. Publishing House, Zürich, 2008 | MR | Zbl
[6] Magaril-Ilyaev G. G., Osipenko K. Yu., Tikhomirov V. M., “Neopredelennost znaniya ob ob'ekte i tochnost metodov ego vosstanovleniya”, Probl. peredachi informatsii, 39:1 (2003), 118–133 | MR | Zbl
[7] Magaril-Ilyaev G. G., Osipenko K. Yu., “Optimalnoe vosstanovlenie funktsii i ikh proizvodnykh po koeffitsientam Fure, zadannym s pogreshnostyu”, Matem. sb., 193:3 (2002), 79–100 | DOI | MR | Zbl
[8] Sherniyazov K., Priblizhennoe vosstanovlenie funktsii i reshenii uravneniya teploprovodnosti s funktsiyami raspredeleniya nachalnykh temperatur iz klassov E, SW i V, Dis. ... kand. fiz.-matem. nauk, Almaty, 1998
[9] Ryabenkii B. C., Vvedenie v vychislitelnuyu matematiku, Ucheb. posobie, 2-e izd., ispravl., Fizmatlit, M., 2000, 296 pp.
[10] Luzin N. N., Sobranie sochinenii, V 3-kh t., Izd-vo AN SSSR, M., 1953–1959
[11] Taugynbaeva G. E., O predelnoi pogreshnosti netochnoi informatsii pri optimalnom vosstanovlenii, PhD-dissertatsiya, Almaty, 2014
[12] Pinkus A., “$n$-widths of Sobolev spaces in $L^p$”, Sonstructive Approximat., 1985, no. 1, 15–62 | DOI | MR | Zbl
[13] Ismagilov R. S., “Poperechniki mnozhestv v lineinykh normirovannykh prostranstvakh i priblizhenie funktsii trigonometricheskimi mnogochlenami”, Uspekhi matem. nauk, 27:3(177) (1974), 161–178
[14] Temirgaliev N., Kudaibergenov S. S., Shomanova A. A., “Primenenie tenzornykh proizvedenii funktsionalov v zadachakh chislennogo integrirovaniya”, Izv. RAN. Ser. matem., 73:2 (2009), 183–224 | DOI | MR | Zbl
[15] Besov O. V., Ilin V. P., Nikolskii S. M., Integralnye predstavleniya funktsii i teoremy vlozheniya, Nauka, M., 1996 | MR