Informative cardinality of trigonometric Fourier coefficients and their limiting error in the discretization of a differentiation operator in multidimensional Sobolev classes
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 55 (2015) no. 9, pp. 1474-1485 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The computational (numerical) diameter is used to completely solve the problem of approximate differentiation of a function given inexact information in the form of an arbitrary finite set of trigonometric Fourier coefficients.
@article{ZVMMF_2015_55_9_a2,
     author = {A. Zh. Zhubanysheva and N. Temirgaliev},
     title = {Informative cardinality of trigonometric {Fourier} coefficients and their limiting error in the discretization of a differentiation operator in multidimensional {Sobolev} classes},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1474--1485},
     year = {2015},
     volume = {55},
     number = {9},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_9_a2/}
}
TY  - JOUR
AU  - A. Zh. Zhubanysheva
AU  - N. Temirgaliev
TI  - Informative cardinality of trigonometric Fourier coefficients and their limiting error in the discretization of a differentiation operator in multidimensional Sobolev classes
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2015
SP  - 1474
EP  - 1485
VL  - 55
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_9_a2/
LA  - ru
ID  - ZVMMF_2015_55_9_a2
ER  - 
%0 Journal Article
%A A. Zh. Zhubanysheva
%A N. Temirgaliev
%T Informative cardinality of trigonometric Fourier coefficients and their limiting error in the discretization of a differentiation operator in multidimensional Sobolev classes
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2015
%P 1474-1485
%V 55
%N 9
%U http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_9_a2/
%G ru
%F ZVMMF_2015_55_9_a2
A. Zh. Zhubanysheva; N. Temirgaliev. Informative cardinality of trigonometric Fourier coefficients and their limiting error in the discretization of a differentiation operator in multidimensional Sobolev classes. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 55 (2015) no. 9, pp. 1474-1485. http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_9_a2/

[1] Temirgaliev N., Sherniyazov K. E., Berikkhanova M. E., “Tochnye poryadki kompyuternykh (vychislitelnykh) poperechnikov v zadachakh vosstanovleniya funktsii i diskretizatsii reshenii uravneniya Kleina–Gordona po koeffitsientam Fure”, Matematika i informatika, K 75-letiyu so dnya rozhdeniya Anatoliya Alekseevicha Karatsuby, Sovremennye problemy matematiki, 17, MIAN, M., 2013, 179–207 | DOI | Zbl

[2] Temirgaliev N., Abikenova Sh. K., Zhubanysheva A. Zh., Taugynbaeva G. E., “Zadachi diskretizatsii reshenii volnovogo uravneniya, chislennogo differentsirovaniya i vosstanovleniya funktsii v kontekste kompyuternogo (vychislitelnogo) poperechnika”, Izv. VUZov. Matematika, 2013, no. 8, 86–93

[3] Temirgaliev N., “Kompyuternyi (vychislitelnyi) poperechnik kak sintez izvestnogo i novogo v chislennom analize”, Vestn. ENU im. L. N. Gumileva, 2014, no. 4(101), 16–33

[4] Plaskota L., Noisy information and computational complexity, University Press, Cambridge, 1996, 308 pp. | MR | Zbl

[5] Novak E., Wózniakowski H., Tractability of multivariate problems, v. I, EMS Tracts Math., 6, Linear information, European Math. Soc. Publishing House, Zürich, 2008 | MR | Zbl

[6] Magaril-Ilyaev G. G., Osipenko K. Yu., Tikhomirov V. M., “Neopredelennost znaniya ob ob'ekte i tochnost metodov ego vosstanovleniya”, Probl. peredachi informatsii, 39:1 (2003), 118–133 | MR | Zbl

[7] Magaril-Ilyaev G. G., Osipenko K. Yu., “Optimalnoe vosstanovlenie funktsii i ikh proizvodnykh po koeffitsientam Fure, zadannym s pogreshnostyu”, Matem. sb., 193:3 (2002), 79–100 | DOI | MR | Zbl

[8] Sherniyazov K., Priblizhennoe vosstanovlenie funktsii i reshenii uravneniya teploprovodnosti s funktsiyami raspredeleniya nachalnykh temperatur iz klassov E, SW i V, Dis. ... kand. fiz.-matem. nauk, Almaty, 1998

[9] Ryabenkii B. C., Vvedenie v vychislitelnuyu matematiku, Ucheb. posobie, 2-e izd., ispravl., Fizmatlit, M., 2000, 296 pp.

[10] Luzin N. N., Sobranie sochinenii, V 3-kh t., Izd-vo AN SSSR, M., 1953–1959

[11] Taugynbaeva G. E., O predelnoi pogreshnosti netochnoi informatsii pri optimalnom vosstanovlenii, PhD-dissertatsiya, Almaty, 2014

[12] Pinkus A., “$n$-widths of Sobolev spaces in $L^p$”, Sonstructive Approximat., 1985, no. 1, 15–62 | DOI | MR | Zbl

[13] Ismagilov R. S., “Poperechniki mnozhestv v lineinykh normirovannykh prostranstvakh i priblizhenie funktsii trigonometricheskimi mnogochlenami”, Uspekhi matem. nauk, 27:3(177) (1974), 161–178

[14] Temirgaliev N., Kudaibergenov S. S., Shomanova A. A., “Primenenie tenzornykh proizvedenii funktsionalov v zadachakh chislennogo integrirovaniya”, Izv. RAN. Ser. matem., 73:2 (2009), 183–224 | DOI | MR | Zbl

[15] Besov O. V., Ilin V. P., Nikolskii S. M., Integralnye predstavleniya funktsii i teoremy vlozheniya, Nauka, M., 1996 | MR