Informative cardinality of trigonometric Fourier coefficients and their limiting error in the discretization of a differentiation operator in multidimensional Sobolev classes
    
    
  
  
  
      
      
      
        
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 55 (2015) no. 9, pp. 1474-1485
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              The computational (numerical) diameter is used to completely solve the problem of approximate differentiation of a function given inexact information in the form of an arbitrary finite set of trigonometric Fourier coefficients.
            
            
            
          
        
      @article{ZVMMF_2015_55_9_a2,
     author = {A. Zh. Zhubanysheva and N. Temirgaliev},
     title = {Informative cardinality of trigonometric {Fourier} coefficients and their limiting error in the discretization of a differentiation operator in multidimensional {Sobolev} classes},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1474--1485},
     publisher = {mathdoc},
     volume = {55},
     number = {9},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_9_a2/}
}
                      
                      
                    TY - JOUR AU - A. Zh. Zhubanysheva AU - N. Temirgaliev TI - Informative cardinality of trigonometric Fourier coefficients and their limiting error in the discretization of a differentiation operator in multidimensional Sobolev classes JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2015 SP - 1474 EP - 1485 VL - 55 IS - 9 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_9_a2/ LA - ru ID - ZVMMF_2015_55_9_a2 ER -
%0 Journal Article %A A. Zh. Zhubanysheva %A N. Temirgaliev %T Informative cardinality of trigonometric Fourier coefficients and their limiting error in the discretization of a differentiation operator in multidimensional Sobolev classes %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2015 %P 1474-1485 %V 55 %N 9 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_9_a2/ %G ru %F ZVMMF_2015_55_9_a2
A. Zh. Zhubanysheva; N. Temirgaliev. Informative cardinality of trigonometric Fourier coefficients and their limiting error in the discretization of a differentiation operator in multidimensional Sobolev classes. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 55 (2015) no. 9, pp. 1474-1485. http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_9_a2/
