On the elasticity of blood vessels in one-dimensional problems of hemodynamics
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 55 (2015) no. 9, pp. 1599-1610 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

One-dimensional models of hemodynamics proved to be effective in the analysis of blood flow in humans in the normal and pathological states. A key factor contributing to the successful simulation using one-dimensional models is the inclusion of elastic properties of blood vessel walls. This paper is devoted to the comparative analysis of various mathematical descriptions of elastic properties of vessel walls in modern one-dimensional models of hemodynamics.
@article{ZVMMF_2015_55_9_a14,
     author = {Yu. V. Vassilevski and V. U. Salamatova and S. S. Simakov},
     title = {On the elasticity of blood vessels in one-dimensional problems of hemodynamics},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1599--1610},
     year = {2015},
     volume = {55},
     number = {9},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_9_a14/}
}
TY  - JOUR
AU  - Yu. V. Vassilevski
AU  - V. U. Salamatova
AU  - S. S. Simakov
TI  - On the elasticity of blood vessels in one-dimensional problems of hemodynamics
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2015
SP  - 1599
EP  - 1610
VL  - 55
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_9_a14/
LA  - ru
ID  - ZVMMF_2015_55_9_a14
ER  - 
%0 Journal Article
%A Yu. V. Vassilevski
%A V. U. Salamatova
%A S. S. Simakov
%T On the elasticity of blood vessels in one-dimensional problems of hemodynamics
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2015
%P 1599-1610
%V 55
%N 9
%U http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_9_a14/
%G ru
%F ZVMMF_2015_55_9_a14
Yu. V. Vassilevski; V. U. Salamatova; S. S. Simakov. On the elasticity of blood vessels in one-dimensional problems of hemodynamics. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 55 (2015) no. 9, pp. 1599-1610. http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_9_a14/

[1] Abakumov M. V., Gavrilyuk K. V., Esikova N. B., Koshelev V. B., Lukshin A. V., Mukhin S. I., Sosnin N. V., Tishkin V. F., Favorskii A. P., “Matematicheskaya model gemodinamiki serdechno-sosudistoi sistemy”, Differents. ur-niya, 7:33 (1997), 892–898 | MR | Zbl

[2] Abakumov M. V., Ashmetkov I. V., Esikova N. V., Koshelev V. V., Mukhin S. I., Sosnin N. V., Tishkin V. F., Favorskii A. P., Khrulenko A. B., “Strategiya modelirovaniya serdechno-sosudistoi sistemy”, Matem. modelirovanie, 12:2 (2000), 106–117 | Zbl

[3] Ashmetkov I. V., Bunicheva A. Ya., Lukshin V. A., Koshelev V. V., Mukhin S. I., Sosnin N. V., Favorskii A. P., Khrulenko A. B., “Matematicheskoe modelirovanie krovoobrascheniya na osnove programmnogo kompleksa CVSS”, Kompyuternye modeli i progress meditsiny, Nauka, M., 2001, 194–218

[4] Ashmetkov I. V., Mukhin S. I., Sosnin N. V., Favorskii A. P., “A Boundary value problem for the linearized haemodynamic equations on a graph”, Differential Equations, 40:1 (2003), 94–104 | DOI | MR

[5] Bunicheva A. Ya., Menyailova M. A., Mukhin S. I., Sosnin N. V., Favorskii A. P., “Studying the influence of gravitational overloads on the parameters of blood flow in vessels of greater circulation”, Mathematical Models and Computer Simulations, 5:1 (2013), 81–91 | DOI | MR

[6] Blausen.com staff, “Blausen gallery 2014”, Wikiversity Journal of Medicine, 1:2, August (2014) | DOI

[7] Rhodin J. A. G., “Architecture of the vessel wall”, The Handbook of Physiology. The Cardiovascular System, v. 2, Bethesda, Maryland, 1980, 1–31

[8] Vito R. P., Dixon S. A., “Blood vessel constitutive models-1995–2002”, Annual Review of Biomedical Engng., 5:1 (2003), 413–439 | DOI

[9] Holzapfel G. A., “Biomechanics of soft tissue”, The handbook of materials behavior models, v. 3, 2001, 1049–1063

[10] Roach M. R., Burton A. C., “The reason for the shape of the distensibility curves of arteries”, Canadian J. Biochemistry and Physiology, 35:8 (1957), 681–690 | DOI

[11] Humphrey J. D., “Review Paper: Continuum biomechanics of soft biological tissues”, Proc. Royal Soc. London A: Math., Physic. Engng Sci. The Royal Soc., 459:2029 (2003), 3–46 | DOI | MR | Zbl

[12] Holzapfel G. A., Ogden R. W., “Constitutive modelling of arteries”, Proc. Royal Soc. London A: Math., Physic. Engng Sci. The Royal Soc., 466:2118 (2010), 1551–1597 | DOI | MR | Zbl

[13] Kalita P., Schaefer R., “Mechanical models of artery walls”, Archives of Comput. Methods in Engng., 15:1 (2008), 1–36 | DOI | MR | Zbl

[14] Chen H., Luo T., Zhao X., Lu X., Huo Y., Kassab G. S., “Microstructural constitutive model of active coronary media”, Biomaterials, 34:31 (2013), 7575–7583 | DOI

[15] Hollander Y., Durban D., Lu X., Kassab G. S., Lanir Y., “Constitutive modeling of coronary arterial media-comparison of three model classes”, J. Biomechanical Engng., 133:6 (2011), 061008 | DOI

[16] Sokolis D. P., “Experimental investigation and constitutive modeling of the 3D histomechanical properties of vein tissue”, Biomechan. Modeling in Mechanobiology, 12:3 (2013), 431–451 | DOI

[17] Ghuong C. J., Fung Y. C., “Three-dimensional stress distribution in arteries”, J. Biomechanical Engng., 105:3 (1983), 268–274 | DOI

[18] Holzapfel G. A., Gasser T. C., Ogden R. W., “A new constitutive framework for arterial wall mechanics and a comparative study of material models”, J. Elasticity and the Physic. Sci. Solids, 61:1–3 (2000), 1–48 | DOI | MR | Zbl

[19] Gasser T. G., Ogden R. W., Holzapfel G. A., “Hyperelastic modelling of arterial layers with distributed collagen fibre orientations”, J. Royal Society Interface, 3:6 (2006), 15–35 | DOI | MR

[20] Holzapfel G. A., Sommer G., Gasser S. T., Regitnig P., “Determination of layer-specific mechanical properties of human coronary arteries with nonatherosclerotic intimal thickening and related constitutive modeling”, American J. Physiology-Heart and Circulatory Physiology, 289:5 (2005), N2048–N2058 | DOI

[21] Desch G. W., Weizsäcker H. W., “A model for passive elastic properties of rat vena cava”, J. Biomechan., 40:14 (2007), 3130–3145 | DOI

[22] Peskin S. S., McQueen D. M., “A three-dimensional computational method for blood flow in the heart. I: Immersed elastic fibers in a viscous incompressible fluid”, J. Comput. Phys., 81:2 (1989), 372–405 | DOI | MR | Zbl

[23] McQueen D. M., Peskin C. S., “A three-dimensional computational method for blood flow in the heart. II: Contractile fibers”, J. Comput. Phys., 82:2 (1989), 289–297 | DOI | MR | Zbl

[24] Vassilevski Y. V., Simakov S. S., Kapranov S. A., “A multi-model approach to intravenous filter optimization”, Internat. J. for Numerical Methods in Biomedical Engng., 26:7 (2010), 915–925 | Zbl

[25] Vassilevski Y., Simakov S., Salamatova V., Ivanov Y., Dobroserdova T., “Vessel wall models for simulation of atherosclerotic vascular networks”, Math. Modelling of Natural Phenomena, 6:07 (2011), 82–99 | DOI | MR

[26] Agianniotis A., Rezakhaniha R., Stergiopulos N., “A structural constitutive model considering angular dispersion and waviness of collagen fibres of rabbit facial veins”, BioMedical Engineering OnLine, 10:1 (2011), 18 | DOI

[27] Alastru é V., Reña E., Martínez M. A., Doblaré M., “Experimental study and constitutive modelling of the passive mechanical properties of the ovine infrarenal vena cava tissue”, J. Biomechan., 41:14 (2008), 3038–3045 | DOI

[28] McGilvray K. S., Sarkar R., Nguyen K., Puttlitz S. M., “A biomechanical analysis of venous tissue in its normal and post-phlebitic conditions”, J. Biomechan., 43:15 (2010), 2941–2947 | DOI

[29] Yosibash Z., Priel E., “Artery active mechanical response: High order finite element implementation and investigation”, Comput. Methods in Applied Mechanics and Engng., 237 (2012), 51–66 | DOI | MR | Zbl

[30] Olufsen M. S., Peskin C. S., Kim W. Y., Pedersen E. M., Nadim A., Larsen J., “Numerical simulation and experimental validation of blood flow in arteries with structured-tree outflow conditions”, Annals of Biomedical Engng., 28 (2000), 1281–1299 | DOI

[31] Formaggia L., Quarteroni A., Veneziani A., Cardiovascular mathematics, v. 1, Springer, Heidelberg, 2009 | Zbl

[32] Kholodov A. S., “Nekotorye dinamicheskie modeli vneshnego dykhaniya i krovoobrascheniya s uchetom ikh svyaznosti i perenosa veschestv”, Kompyuternye modeli i progress meditsiny, Nauka, M., 2001, 127–163

[33] Alastruey J., Parker K. H., Peiró J., Sherwin S. J., “Lumped parameter outflow models for 1-D blood flow simulations: effect on pulse waves and parameter estimation”, Communicat. Comput. Physics, 4:2 (2008), 317–336 | MR

[34] Müller L. O., Parés C., Toro E., “Well-balanced high-order numerical schemes for one-dimensional blood flow in vessels with varying mechanical properties”, J. Comput. Physics, 242 (2013), 53–85 | DOI | MR | Zbl

[35] Simakov S. S., Kholodov A. S., Evdokimov A. V., “Metody rascheta globalnogo krovotoka v organizme cheloveka s ispolzovaniem geterogennykh vychislitelnykh modelei”, Meditsina v zerkale informatiki, Nauka, M., 2008, 124–170

[36] Simakov S. S., Kholodov A. S., “Computational study of oxygen concentration in human blood under low frequency disturbances”, Math. Models and Comp. Simulations, 1 (2009), 283–295 | DOI | MR

[37] Pedley T. J., Luo X. Y., “Modelling flow and oscillations in collapsible tubes”, Theoretical and Computational Fluid Dynamics, 10 (1998), 277–294 | DOI | Zbl

[38] Formaggia L., Lamponi D., Quarteroni A., “One-dimensional models for blood flow in arteries”, J. Engng. Mathematics, 47 (2003), 251–276 | DOI | MR | Zbl

[39] Mynard J. P., Nithiarasu P., “A 1D arterial blood flow model incorporating ventricular pressure, aortic valve and regional coronary flow using the locally conservative Galerkin (LCG) method”, Communications in Numerical Methods in Engng., 24:5 (2008), 367–417 | DOI | MR | Zbl

[40] Larrabidea I., Blanco P. J., Urquiza S. A., Dari E. A., Véneref M. J., de Souza e Silvac N. A., Feijóo R. A., “HeMoLab — hemodynamics modelling laboratory: An application for modelling the human cardiovascular system”, Comput. Biology and Medicine, 42 (2012), 993–1004 | DOI

[41] Armentano R., Megnien J. L., Simon A., Bellenfant F., Barra J., Levenson J., “Effect of hypertension on viscoelasticity of carotid and femoral arteries in humans”, Hypertension, 26 (1995), 48–54 | DOI

[42] Studinger P., Lénárd Z., Kováts Z., Kocsis L., Kollai M., “Static and dynamic changes in carotid artery diameter in humans during and after strenuous exercise”, J. Physiology, 550 (2003), 575–583 | DOI

[43] Dobrin P. V., Littooy F. N., Golan J., Blakeman V., Fareed J., “Mechanical and histologic changes in canine vein grafts”, J. Surgical Research, 44:3 (1988), 259–265 | DOI

[44] Dobrin P. V., “Mechanics of normal and diseased blood vessels”, Annals of Vascular Surgery, 2:3 (1988), 283–294 | DOI

[45] Fernandez J., Hunter P., Shim V., Mithraratne K., “A subject-specific framework to inform musculoskeletal modeling: outcomes from the IUPS Physiome Project”, Patient-Specific Computational Modeling, eds. Calvo Lopes B., Peña E., Springer Netherlands, 2012, 39–60 | DOI

[46] Müller L. O., Toro E., “A global multiscale mathematical model for the human circulation with emphasis on the venous system”, Internat. J. Numerical Methods in Biomedical Engng., 30:7 (2014), 681–725 | DOI | MR

[47] Magomedov K. M., Kholodov A. S., Setochno-kharakteristicheskie chislennye metody, Nauka, M., 1988, 290 pp. | MR