Systems of quasilinear conservation laws and algorithmization of variational principles
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 55 (2015) no. 9, pp. 1586-1598 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A previously formulated new approach to the consideration of systems of quasilinear hyperbolic equations on the basis of variational principles is described in more detail in the case of special systems of three equations. It is shown that each field of characteristics can be represented as a solution of a variational problem. Moreover, the Rankine–Hugoniot relations at the corner points of the characteristics or at the intersections of the characteristics of a single family hold automatically. In the simplest case of the Hopf equation, a numerical algorithm is constructed on the basis of a variational principle.
@article{ZVMMF_2015_55_9_a13,
     author = {Yu. G. Rykov and O. B. Feodoritova},
     title = {Systems of quasilinear conservation laws and algorithmization of variational principles},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1586--1598},
     year = {2015},
     volume = {55},
     number = {9},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_9_a13/}
}
TY  - JOUR
AU  - Yu. G. Rykov
AU  - O. B. Feodoritova
TI  - Systems of quasilinear conservation laws and algorithmization of variational principles
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2015
SP  - 1586
EP  - 1598
VL  - 55
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_9_a13/
LA  - ru
ID  - ZVMMF_2015_55_9_a13
ER  - 
%0 Journal Article
%A Yu. G. Rykov
%A O. B. Feodoritova
%T Systems of quasilinear conservation laws and algorithmization of variational principles
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2015
%P 1586-1598
%V 55
%N 9
%U http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_9_a13/
%G ru
%F ZVMMF_2015_55_9_a13
Yu. G. Rykov; O. B. Feodoritova. Systems of quasilinear conservation laws and algorithmization of variational principles. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 55 (2015) no. 9, pp. 1586-1598. http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_9_a13/

[1] Volpert A. I., “Prostranstva i kvazilineinye uravneniya”, Matem. sb., 73:2 (1967), 255–302 | MR

[2] Kruzhkov S. N., “Kvazilineinye uravneniya pervogo poryadka so mnogimi nezavisimymi peremennymi”, Matem. sb., 81:2 (1970), 228–255 | MR | Zbl

[3] Rozhdestvenskii B. L., Yanenko N. N., Sistemy kvazilineinykh uravnenii i ikh prilozheniya k gazovoi dinamike, Nauka, M., 1978 | MR

[4] Smoller J., Shock waves and reaction-diffusion equations, Fundamental Principles of Math. Sci., 258, Springer-Verlag, New York, 1994 | MR | Zbl

[5] S. K. Godunov (red.), Chislennoe reshenie mnogomernykh zadach gazovoi dinamiki, Nauka, M., 1976 | MR

[6] Kulikovskii A. G., Pogorelov N. V., Semenov A. Yu., Matematicheskie voprosy chislennogo resheniya giperbolicheskikh sistem uravnenii, Nauka. Fizmatlit, M., 2001 | MR

[7] Rykov Yu. G., “Variatsionnoe predstavlenie obobschennykh reshenii kvazilineinykh giperbolicheskikh sistem i vozmozhnye algoritmy dlya gibridnykh vychislitelnykh kompleksov”, Preprinty IPM im. M. V. Keldysha, 2011, 062, 9 pp. http://keldysh.ru/papers/2011/prep62/prep2011_62.pdf

[8] Rykov Yu. G., Feodoritova O. B., “O metodologii variatsionnogo predstavleniya obobschennykh reshenii dlya kvazilineinykh giperbolicheskikh sistem dvukh uravnenii”, Preprinty IPM im. M. V. Keldysha, 2014, 084, 22 pp. http://keldysh.ru/papers/2014/prep2014_84.pdf | Zbl

[9] Weinan E., Rykov Yu. G., Sinai Ya. G., “Generalized variational principles, global weak solutions and behavior with random initial data for systems of conservation laws arising in adhesion particle dynamics”, Comm. Math. Phys., 177 (1996), 349–380 | DOI | MR | Zbl

[10] Aptekarev A. I., Rykov Yu. G., “On the variational representation of solutions to some quasilinear equations and systems of hyperbolic type on the basis of potential theory”, Russian J. Math. Phys., 13:1 (2006), 4–12 | DOI | MR | Zbl

[11] Keyfitz B. L., Kranzer H. C., “A viscous approximation to a system of conservation laws with no classical Riemann solution”, Nonlinear Hyperbolic problems, Lecture Notes in Math., 1402, 1989, 185–197 | DOI | MR | Zbl

[12] Hopf E., “The partial differential equation $u_t+uu_x=\mu u_{xx}$”, Comm. Pure Appl. Math., 3 (1950), 201–230 | DOI | MR | Zbl

[13] Oleinik O. A., “Zadacha Koshi dlya nelineinykh differentsialnykh uravnenii pervogo poryadka s razryvnymi nachalnymi usloviyami”, Tr. Mosk. matem. ob-va, 5, 1956, 433–454 | MR | Zbl

[14] Nessyahu H., Tadmor E., “Non-oscillatory central Differencing for hyperbolic conservation laws”, J. Comput. Phys., 87:2 (1990), 408–463 | DOI | MR | Zbl

[15] CentPack: A package of high-resolution central schemes for nonlinear conservation laws, http://www.cscamm.umd.edu/centpack

[16] Aleksandrikova T. A., Galanin M. P., “Nelineinaya monotonizatsiya skhemy K. I. Babenko dlya chislennogo resheniya kvazilineinogo uravneniya perenosa”, Preprinty IPM im. M. V. Keldysha, 2003, 062, 35 pp. http://keldysh.ru/papers/2003/prep62/prep2003_62.html | Zbl

[17] Tadmor E., “Variational formulation of entropy solutions for nonlinear conservation laws”, Joint Math. Meeting (Baltimore, MD, January 2014) http://www.cscamm.umd.edu/tadmor/Lectures/2014