@article{ZVMMF_2015_55_9_a10,
author = {O. M. Belotserkovskii and N. N. Fimin and V. M. Chechetkin},
title = {Statistical mechanics of vortex hydrodynamic structures},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1559--1565},
year = {2015},
volume = {55},
number = {9},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_9_a10/}
}
TY - JOUR AU - O. M. Belotserkovskii AU - N. N. Fimin AU - V. M. Chechetkin TI - Statistical mechanics of vortex hydrodynamic structures JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2015 SP - 1559 EP - 1565 VL - 55 IS - 9 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_9_a10/ LA - ru ID - ZVMMF_2015_55_9_a10 ER -
%0 Journal Article %A O. M. Belotserkovskii %A N. N. Fimin %A V. M. Chechetkin %T Statistical mechanics of vortex hydrodynamic structures %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2015 %P 1559-1565 %V 55 %N 9 %U http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_9_a10/ %G ru %F ZVMMF_2015_55_9_a10
O. M. Belotserkovskii; N. N. Fimin; V. M. Chechetkin. Statistical mechanics of vortex hydrodynamic structures. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 55 (2015) no. 9, pp. 1559-1565. http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_9_a10/
[1] Reynolds O., “On the dynamical theory of incompressible viscous fluids and the determination of the criterion”, Philos. Trans. Roy. Soc. London. Ser. A, 186 (1895), 123 | DOI
[2] Belotserkovskii O. M., “Computational experiment: direct numerical simulation of complex gas-dynamics flow on the basis of Euler, Navier–Stokes and Boltzmann equation”, Karman Lectures. Numerical methods in fluid dynamics, eds. Wirz H. J., Smolderen J. J., Hemisphere, Washington–London, 1978, 339–387
[3] Belotserkovskii O. M., “Direct numerical modeling of free induced turbulence”, J. Comput. Math. and Math. Phys., 13:6 (1985), 166–183 | DOI | MR
[4] Belotserkovskii O. M., Oparin A. M., Chechëtkin V. M., Turbulentnost: novye podkhody, Nauka, M., 2002
[5] Belotserkovskii O. M., Oparin A. M., Chechëtkin V. M., “Fizicheskie protsessy razvitiya sdvigovoi turbulentnosti”, Zh. eksperiment. i teor. fiz., 126:3(9) (2004), 577–584
[6] Kline S. J., Reynolds W. D., Schraub F. A., Runstadler P. W., “The structure of turbulent boundary layers”, J. Fluid Mech., 30 (1967), 741–773 | DOI
[7] Crow S. C., Champagne F. H., “Orderly structure in jet turbulence”, J. Fluid Mech., 48 (1971), 547–591 | DOI
[8] Brown G. L., Roshko A., “On density effects and large structure in turbulent mixing layers”, J. Fluid Mech., 64 (1974), 775–816 | DOI
[9] Perry A. E., Lim T. T., Chong M. S., Tex E. W., The fabric of turbulence, AIAA Paper No 80-1358, 1980
[10] Lesieur M., Turbulence in fluids, Kluwer Academic Publishers, Dordrecht–Boston–London, 1997 | MR | Zbl
[11] Hussain A. K. M., “Role of coherent structures in turbulent shear flows”, Proc. Indian Acad. Sci. (Engg. Sci.), 4:2 (1981), 129–175
[12] Tennekes H., Lumley J. L., A first course in turbulence, MIT Press, Cambridge, Massachusets, 1972
[13] van de Fliert B. W., van Groesen E., “On variational principles for coherent vortex structures”, Appl. Scient. Research, 51 (1993), 399–403 | DOI | Zbl
[14] Fledderus E. R., van Groesen E., “Deformation of coherent structures”, Rep. Prog. Phys., 59 (1996), 511–600 | DOI
[15] van de Fliert B. W., van Groesen E., “Monopolar vortices as relative equilibria and their dissipative decay”, Nonlinearity, 5 (1992), 473–495 | DOI | MR | Zbl
[16] van Groesen E., “Time-asymptotics and the self-organization hypothesis for 2D Navier–Stokes equations”, Physica A, 148 (1988), 312–330 | DOI | MR | Zbl
[17] Hussain A. K. M. F., Reynolds W. C., “The mechanics of an organized wave in turbulent shear flow”, J. Fluid Mech., 41 (1970), 241–258 | DOI
[18] Hussain A. K. M. F., “Coherent structures and studies of perturbed and unperturbed jets”, The role of coherent structures in modelling turbulence and mixing, Proc. of the Internat. Conf. (Madrid, Spain, June 25–27, 1980), ed. Jimenez J., Springer-Verlag, Berlin–Heidelberg–New York, 1981, 252–291 | DOI | MR
[19] Onsager L., “Statistical hydrodynamics”, Nuovo Cimento Suppl., 6 (1949), 279–289 | DOI | MR
[20] Bouchet F., Venaille A., “Statistical mechanics of two-dimensional and geophysical flows”, Physics Reports, 515 (2012), 227–295 | DOI | MR
[21] Pointin Y. B., Lundgren T. S., “Statistical mechanics of two-dimensional vortices in a bounded container”, Phys. Fluids, 19:10 (1976), 1459–1470 | DOI | Zbl
[22] Marchioro C., Pulvirenti M., Mathematical theory of incompressible fluids, Springer-Verlag, N.Y.–Berlin–Heidelberg, 1994 | MR | Zbl
[23] Sano M., “Kinetic theory of point vortex systems from the Bogoliubov–Born–Green–Kirkwood–Yvon hierarchy”, Phys. Rev. E, 76 (2007), 046312–046321 | DOI | MR
[24] Chavanis P. H., Lemou M., “Kinetic theory of point vortices in two dimensions: analytical results and numerical simulations”, Eur. Phys. Journal V, 59 (2007), 217–247 | DOI | MR | Zbl
[25] Olver P. J., “A nonlinear Hamiltonian structure for the Euler equations”, Journ. Math. Anal. Appl., 89 (1982), 233–250 | DOI | MR | Zbl
[26] Morrison P. J., “Hamiltonian description of the ideal fluid”, Rev. Mod. Phys., 70 (1998), 467–521 | DOI | MR | Zbl
[27] Young L. C., “Generalized curves and the existence of an attained absolute minimum in the calculus of variations”, C. R. Sci. Lettres Varsovie. Classe III, 30 (1937), 212–234 | Zbl
[28] McShane E. J., “Generalized curves”, Duke Math. J., 6 (1940), 513–536 | DOI | MR
[29] Bouchet F., Corvellec M., “Invariant measures of the 2D Euler and Vlasov equations”, Journ. Stat. Mech.: Theory and Experiment, 8 (2010), 08021–08065
[30] Chavanis P. H., Sommeria J., Robert R., “Statistical mechanics of two-dimensional vortices c and collisionless stellar systems”, Astrophys. Journ., 1996, 385 | DOI
[31] Miller J., Weichman P. V., Cross M. C., “Statistical mechanics, Euler's equation, and Jupiter's Red Spot”, Phys. Rev. A, 45:4 (1992), 2328–2359 | DOI
[32] Lynden-Bell D., “Statistical mechanics of violent relaxation in stellar systems”, Mon. Not. Roy. Astron. Sos., 136 (1967), 101–121 | DOI
[33] Robert R., Sommeria J., “Statistical equilibrium states for two-dimensional flows”, J. Fluid Mesh., 229 (1991), 291–310 | DOI | MR | Zbl
[34] Miller J., “Statistical mechanics of Euler equations in two dimensions”, Phys. Rev. Lett., 65 (1990), 2137–2140 | DOI | MR | Zbl
[35] Montgomery D., Joyce G., “Statistical mechanics of “negative temperature” states”, Phys. Fluids, 17 (1974), 1139–1145 | DOI | MR
[36] Ellis R. S., Haven K., Turkington B., “Nonequivalent statistical equilibrium ensembles and refined stability theorems for most probable flows”, Nonlinearity, 15 (2002), 239–255 | DOI | MR | Zbl
[37] Naso A., Chavanis P. H., Dubrulle B., “Statistical mechanics of two-dimensional Euler flows and minimum enstrophy states”, Europ. Phys. Journ., 77:2 (2010), 187–212 | DOI | MR