Differentiating matrix orthogonal transformations
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 55 (2015) no. 9, pp. 1460-1473 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

New numerical algorithms for differentiating matrix orthogonal transformations are constructed. They do not require that the derivatives of the orthogonal transformation matrix be available. An example is given how these algorithms can be applied to the numerically stable calculation of a solution to the discrete-time matrix Riccati sensitivity equation.
@article{ZVMMF_2015_55_9_a1,
     author = {M. V. Kulikova and J. V. Tsyganova},
     title = {Differentiating matrix orthogonal transformations},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1460--1473},
     year = {2015},
     volume = {55},
     number = {9},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_9_a1/}
}
TY  - JOUR
AU  - M. V. Kulikova
AU  - J. V. Tsyganova
TI  - Differentiating matrix orthogonal transformations
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2015
SP  - 1460
EP  - 1473
VL  - 55
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_9_a1/
LA  - ru
ID  - ZVMMF_2015_55_9_a1
ER  - 
%0 Journal Article
%A M. V. Kulikova
%A J. V. Tsyganova
%T Differentiating matrix orthogonal transformations
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2015
%P 1460-1473
%V 55
%N 9
%U http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_9_a1/
%G ru
%F ZVMMF_2015_55_9_a1
M. V. Kulikova; J. V. Tsyganova. Differentiating matrix orthogonal transformations. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 55 (2015) no. 9, pp. 1460-1473. http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_9_a1/

[1] Voevodin V. V., Vychislitelnye osnovy lineinoi algebry, Nauka, M., 1977 | MR

[2] Samarskii A. A., Gulin A. V., Chislennye metody, Nauka, M., 1989 | MR

[3] Raie Dzh., Matrichnye vychisleniya i matematicheskoe obespechenie, Mir, M., 1984

[4] Semushin I. V., Chislennye metody algebry, uchebnoe posobie dlya vuzov, UlGTU, Ulyanovsk, 2006

[5] Golub Dzh., Van-Loun Ch., Matrichnye vychisleniya, Per. s angl., Mir, M., 1999

[6] Kailath T., Sayed A. H., Hassibi V., Linear estimation, Prentice Hall, New Jersey, 2000

[7] Bierman G. J., Factorization methods for discrete sequential estimation, Academic Press, N.-Y., 1977 | MR | Zbl

[8] M. S. Grewal, A. P. Andrews, Kalman Filtering: theory and practice using MATLAB, Second Edit., John Wiley Sons, Inc., London, 2001 | MR

[9] Veriaegen M., Van Dooren P., “Numerical aspects of different Kalman filter implementations”, IEEE Trans. Automat. Control, AC-31:10 (1986), 907–917 | DOI

[10] Kaminski P. C., Bryson A. E., Schmidt S. F., “Discrete square root filtering: a survey of current techniques”, IEEE Trans. Automat. Control, AC-16:6, Dec. (1971), 727–735 | DOI

[11] Semushin I. V., Tsyganova Yu. V., Kulikova M. V., Fatyanova O. A., Kondratev A. E., Adaptivnye sistemy filtratsii, upravleniya i obnaruzheniya, Monografiya, Izd-vo UlGU, Ulyanovsk, 2011

[12] Gupta N. K., Mehra R. K., “Computational aspects of maximum likelihood estimation and reduction in sensitivity functiori calculations”, IEEE Trans. Automat. Control, AC-19:6 (1974), 774–783 | DOI | MR | Zbl

[13] Aström K. J., “Maximum likelihood and prediction error methods”, Automatica, 16 (1980), 551–574 | DOI | Zbl

[14] Bierman G. J., Belzer M. R., Vapdergraft J. S., Porter D. W., “Maximum likelihood estimation using square root information filters”, IEEE Trans. Automat. Contr., 35:12 (1990), 1293–1299 | DOI | MR

[15] Kulikova M. V., “Likelihood gradient evaluation using square-root covariance filters”, IEEE Trans. Automat. Control, 54:3 (2009), 646–651 | DOI | MR

[16] Kulikova M. V., “Maximum likelihood estimation via the extended covariance and combined square-root filters”, Math. Comput. Simulat., 79 (2009), 1641–1657 | DOI | MR | Zbl

[17] Kulikova M. V., “Maksimalno pravdopodobnoe otsenivanie lineinykh stokhasticheskikh sistem v klasse posledovatelnykh kvadratno-kornevykh ortogonalnykh metodov filtratsii”, Avtomat. i telemekhan., 2011, no. 4, 99–120

[18] Semushin I. V., Tsyganova Yu. V., “Adaptivnyi kvadratno-kornevoi kovariatsionnyi algoritm filtratsii dlya navigatsionnykh kompleksov”, Perspektivnye informatsionnye tekhnologii dlya aviatsii i kosmosa, Tr. mezhdunar. konf. PIT-2010 (Samara, 2010), 118–122

[19] Tsyganova Yu. V., “Vychislenie gradienta vspomogatelnogo funktsionala kachestva v zadache parametricheskoi identifikatsii stokhasticheskikh sistem”, Avtomat. i telemekhan., 2011, no. 9, 142–160

[20] Tsyganova Yu. V., Kulikova M. V., “Ob effektivnykh metodakh parametricheskoi identifikatsii lineinykh diskretnykh stokhasticheskikh sistem”, Avtomat. i telemekhan., 2012, no. 6, 34–51

[21] Died L., Eirola T., “On smooth decompositions of matrices”, SIAM. J. Matrix Anal. Appl., 20:3 (1999), 800–819 | DOI | MR

[22] Ogarkov M. A., Metody statisticheskogo otsenivaniya parametrov sluchainykh protsessov, Energoatomizdat, M., 1990

[23] Park P., Kailath T., “New square-root algorithms for Kalman filtering”, IEEE Trans. Automat. Contr., 40:5 (1995), 895–899 | DOI | MR | Zbl