@article{ZVMMF_2015_55_8_a8,
author = {T. G. Elizarova and M. V. Popov},
title = {Numerical simulation of three-dimensional quasi-neutral gas flows based on smoothed magnetohydrodynamic equations},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1363--1379},
year = {2015},
volume = {55},
number = {8},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_8_a8/}
}
TY - JOUR AU - T. G. Elizarova AU - M. V. Popov TI - Numerical simulation of three-dimensional quasi-neutral gas flows based on smoothed magnetohydrodynamic equations JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2015 SP - 1363 EP - 1379 VL - 55 IS - 8 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_8_a8/ LA - ru ID - ZVMMF_2015_55_8_a8 ER -
%0 Journal Article %A T. G. Elizarova %A M. V. Popov %T Numerical simulation of three-dimensional quasi-neutral gas flows based on smoothed magnetohydrodynamic equations %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2015 %P 1363-1379 %V 55 %N 8 %U http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_8_a8/ %G ru %F ZVMMF_2015_55_8_a8
T. G. Elizarova; M. V. Popov. Numerical simulation of three-dimensional quasi-neutral gas flows based on smoothed magnetohydrodynamic equations. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 55 (2015) no. 8, pp. 1363-1379. http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_8_a8/
[1] Elizarova T. G., Kvazigazodinamicheskie uravneniya i metody rascheta vyazkikh techenii, Nauchnyi mir, M., 2007
[2] Chetverushkin B. N., Kineticheskie skhemy i kvazigazodinamicheskaya sistema uravnenii, Maks Press, M., 2004
[3] Sheretov Yu. V., Dinamika sploshnykh sred pri prostranstvenno-vremennóm osrednenii, NITs “Regulyarnaya i khaoticheskaya dinamika”, Izhevsk, 2009
[4] Elizarova T. G., Kalachinskaya I. S., Sheretov Yu. V., Shirokov I. A., “Chislennoe modelirovanie techenii elektroprovodnoi zhidkosti vo vneshnem magnitnom pole”, Zh. radiotekhn. i elektronika, 50:2 (2005), 245–251
[5] Elizarova T. G., Ustyugov S. D., “Kvazigazodinamicheskii algoritm resheniya uravnenii magnitnoi gidrodinamiki. Odnomernyi sluchai”, Preprinty IPM im. M. V. Keldysha, 2011, 001, 20 pp.
[6] Elizarova T. G., Ustyugov S. D., “Kvazigazodinamicheskii algoritm resheniya uravnenii magnitnoi gidrodinamiki. Mnogomernyi sluchai”, Preprinty IPM im. M. V. Keldysha, 2011, 030, 24 pp.
[7] Ducomet B., Zlotnik A., “On a regularization of the magnetic gas dynamics system of equations”, Kinetic and Related Models, 6:3 (2013), 533–543 | DOI | MR | Zbl
[8] Kulikovskii A. G., Pogorelov N. V., Semenov A. Yu., Matematicheskie voprosy chislennogo resheniya giperbolicheskikh sistem uravnenii, Fizmatlit, M., 2001 | MR
[9] Elizarova T. G., “Osrednenie po vremeni kak priblizhennyi sposob postroeniya kvazigazodinamicheskikh i kvazigidrodinamicheskikh uravnenii”, Zh. vychisl. matem. i matem. fiz., 51:11 (2011), 2096–2105 | MR | Zbl
[10] Gardiner T. A., Stone J. M., “An unsplit Godunov method for ideal MHD via constained transport in three dimensions”, J. Comput. Phys., 227 (2008), 4123–4141 | DOI | MR | Zbl
[11] Ustyugov S. D., Popov M. V., Kritsuk A. F., Norman M. L., “Piecewise parabolic method on a local stencil for magnetized supersonic turbulence simulation”, J. Comput. Phys., 228 (2009), 7614–7633 | DOI | MR | Zbl
[12] Dai W., Woodward P., “A simple finite difference scheme for multidimensional magnetohydrodynamical equations”, J. Comput. Phys., 142 (1998), 331–369 | DOI | MR | Zbl
[13] Tóth G., “The $\nabla\cdot\mathbf{B}=0$ constraint in shocik-capturing magnetohydrodynamics codes”, J. Comput. Phys., 161 (2000), 605–652 | DOI | MR | Zbl
[14] Orszag S. A., Tang C./M., “Small-scale structure of two-dimensional magnetohydrodynamic trubulence”, J. Fluid Mech., 90 (1979), 129–143 | DOI
[15] Vedenov A. A., Velikhov E. P., Sagdeev R. Z., “Ustoichivost plazmy”, Uspekhi fiz. nauk, 73:4 (1961), 701–766 | DOI | MR
[16] Golant V. E., Zhilinskii A. P., Sakharov I. E., Osnovy fiziki plazmy, Atomizdat, M., 1977