Method of adaptive artificial viscosity for solving the Navier–Stokes equations
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 55 (2015) no. 8, pp. 1356-1362 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A numerical technique based on the method of adaptive artificial viscosity is proposed for solving the viscous compressible Navier–Stokes equations in two dimensions. The Navier–Stokes equations is approximated on unstructured meshes, namely, on triangular or tetrahedral elements. The monotonicity of the difference scheme according to the Friedrichs criterion is achieved by adding terms with adaptive artificial viscosity to the scheme. The adaptive artificial viscosity is determined by satisfying the maximum principle conditions. An external flow around a cylinder at various Reynolds numbers is computed as a numerical experiment.
@article{ZVMMF_2015_55_8_a7,
     author = {I. V. Popov and I. V. Fryazinov},
     title = {Method of adaptive artificial viscosity for solving the {Navier{\textendash}Stokes} equations},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1356--1362},
     year = {2015},
     volume = {55},
     number = {8},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_8_a7/}
}
TY  - JOUR
AU  - I. V. Popov
AU  - I. V. Fryazinov
TI  - Method of adaptive artificial viscosity for solving the Navier–Stokes equations
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2015
SP  - 1356
EP  - 1362
VL  - 55
IS  - 8
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_8_a7/
LA  - ru
ID  - ZVMMF_2015_55_8_a7
ER  - 
%0 Journal Article
%A I. V. Popov
%A I. V. Fryazinov
%T Method of adaptive artificial viscosity for solving the Navier–Stokes equations
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2015
%P 1356-1362
%V 55
%N 8
%U http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_8_a7/
%G ru
%F ZVMMF_2015_55_8_a7
I. V. Popov; I. V. Fryazinov. Method of adaptive artificial viscosity for solving the Navier–Stokes equations. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 55 (2015) no. 8, pp. 1356-1362. http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_8_a7/

[1] Popov I. V., Fryazinov I. V., “Konechno-raznostnyi metod resheniya uravnenii gazovoi dinamiki s vvedeniem adaptivnoi iskusstvennoi vyazkosti”, Matem. modelirovanie, 20:8 (2008), 48–60 | MR

[2] Popov I. V., Fryazinov I. V., “Adaptivnaya iskusstvennaya vyazkost dlya mnogomernoi gazovoi dinamiki v eilerovykh peremennykh v dekartovykh koordinatakh”, Matem. modelirovanie, 22:1 (2010), 32–45

[3] Popov I. V., Fryazinov I. V., “Metod adaptivnoi iskusstvennoi vyazkosti dlya uravnenii gazovoi dinamiki na treugolnykh i tetraedralnykh setkakh”, Matem. modelirovanie, 24:6 (2012), 109–127 | Zbl

[4] Popov I. V., Fryazinov I. V., Metod adaptivnoi iskusstvennoi vyazkosti chislennogo resheniya uravnenii gazovoi dinamiki, Krasand, M., 2014

[5] Popov I. V., Fryazinov I. V., “Konechno-raznostnyi metod resheniya dvumernykh uravnenii Nave–Stoksa s adaptivnoi iskusstvennoi vyazkostyu”, Materialy Desyatoi mezhdunarodnoi konferentsii “Setochnye metody dlya kraevykh zadach i prilozheniya”, Kazanskii universitet, Kazan, 2014, 503–509