Providing the divergence-free property of the magnetic field when solving the MHD equations by the RKDG method
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 55 (2015) no. 8, pp. 1329-1340 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A review of methods providing the divergence-free property of the magnetic field when solving the two-dimensional problems of magnetic hydrodynamics on triangular grids by the secondorder discontinuous Galerkin method is presented. Procedures for redistributing the numerical flows corresponding to the magnetic field in the full two-dimensional formulation in the Cartesian coordinates and in the two-dimensional axisymmetric case in the cylindrical coordinates, making it possible to suppress the growth of the numerical divergence of the magnetic field, are described. Test problems of the Orszag–Tang vortex and spherical explosion are considered.
@article{ZVMMF_2015_55_8_a5,
     author = {M. P. Galanin and V. V. Lukin},
     title = {Providing the divergence-free property of the magnetic field when solving the {MHD} equations by the {RKDG} method},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1329--1340},
     year = {2015},
     volume = {55},
     number = {8},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_8_a5/}
}
TY  - JOUR
AU  - M. P. Galanin
AU  - V. V. Lukin
TI  - Providing the divergence-free property of the magnetic field when solving the MHD equations by the RKDG method
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2015
SP  - 1329
EP  - 1340
VL  - 55
IS  - 8
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_8_a5/
LA  - ru
ID  - ZVMMF_2015_55_8_a5
ER  - 
%0 Journal Article
%A M. P. Galanin
%A V. V. Lukin
%T Providing the divergence-free property of the magnetic field when solving the MHD equations by the RKDG method
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2015
%P 1329-1340
%V 55
%N 8
%U http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_8_a5/
%G ru
%F ZVMMF_2015_55_8_a5
M. P. Galanin; V. V. Lukin. Providing the divergence-free property of the magnetic field when solving the MHD equations by the RKDG method. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 55 (2015) no. 8, pp. 1329-1340. http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_8_a5/

[1] Kulikovskii A. G., Lyubimov G. A., Magnitnaya gidrodinamika, Logos, M., 2005

[2] Kulikovskii A. G., Pogorelov N. V., Semenov A. Yu., Matematicheskie voprosy chislennogo resheniya giperbolicheskikh sistem uravnenii, Fizmatlit, M., 2001 | MR

[3] Brackbill J. U., Barnes B. C., “The effect of nonzero $\nabla\cdot\mathbf{B}$ in the numerical solution of the magnetohydrodynamis equations”, J. Somp. Phys., 35 (1980), 426–430 | MR | Zbl

[4] Galanin M. P., Lukin V. V., “Raznostnaya skhema dlya resheniya dvumernykh zadach idealnoi MGD na nestrukturirovannykh setkakh”, Preprinty IPM im. M. V. Keldysha, 2007, 050, 29 pp.

[5] Biro O., Preis K., “On the use of magnetic vector potential in the finite element analysis of three-dimensional eddy currents”, IEEE Trans. Magn., 25 (1989), 3145–3159 | DOI

[6] Galanin M. P., Popov Yu. P., Kvazistatsionarnye elektromagnitnye polya v neodnorodnykh sredakh: Matematicheskoe modelirovanie, Fizmatlit, M., 1995

[7] Tóth G., “The $\nabla\cdot\mathbf{B}=0$ constraint in shocik-capturing magnetohydrodynamics codes”, J. Comput. Phys., 161 (2000), 605–652 | DOI | MR | Zbl

[8] Landau L. D., Lifshits E. M., Teoreticheskaya fizika, v. VIII, Elektrodinamika sploshnykh sred, Fizmatlit, M., 2001

[9] Galanin M. P., Savenkov E. B., Tokareva S. A., “Reshenie zadach gazovoi dinamiki s udarnymi volnami RKDG-metodom”, Matem. modelirovanie, 20:11 (2008), 55–66 | Zbl

[10] Lukin V. V., Shapovalov K.L., “Primenenie RKDG metoda vtorogo poryadka dlya resheniya dvumernykh uravnenii idealnoi magnitnoi gidrodinamiki”, Vestnik MGTU im. N. E. Baumana. Estestvennye nauki, 2012, Spets. vypusk No 2 “Matematicheskoe modelirovanie v tekhnike”, 98–108

[11] Cockburn V., Shu C.-W., “Runge–Kutta discontinuous Galerkin methods for convection dominated problems”, J. Scientific Computing, 16 (2001), 173–261 | DOI | MR | Zbl

[12] Galanin M. P., Lukin V. V., Shapovalov K. L., “Modelirovanie razvitiya magnitorotatsionnoi neustoichivosti s ispolzovaniem parallelnogo RKDG algoritma dlya sistemy uravnenii MGD”, Vychislitelnye metody i programmirovanie, 15 (2014), 143–153

[13] Skinner M. A., Ostriker E. C., “The Athena astrophysical magnetohydrodynamics code in cylindrical geometry”, The Astrophysical Journal Supplement Series, 188 (2010) | DOI

[14] Mignone A., Bodo G., “Shock-Capturing schemes in computational MHD”, Lecture Notes in Physics, 754, 2008, 71–101 | DOI | Zbl

[15] Rumsey D., Sun T., “A smoothness/shock indicator for the RKDG methods”, Appl. Mathematics Letters, 23:12 (2010), 1425–1431 | DOI | MR | Zbl

[16] Toro E. F., Riemann solvers and numerical methods for fluid dynamics: a practical introduction, Springer-Verlag, Berlin–Heidelberg, 2009 | MR | Zbl

[17] Torrilhon M., “Locally Divergence-preserving upwind finite volume schemes for magnetohydrodynamic equations”, SIAM J. Sci. Comput., 26:4 (2005), 1166–1191 | DOI | MR | Zbl

[18] Roe P., “Characteristic-based schemes for the Euler equations”, Ann. Rev. Fluid Mech., 18 (1986), 337–365 | DOI | MR | Zbl

[19] Orszag A., Tang C., “Small-scale structure of two-dimensional magnetohydrodynamic turbulence”, J. Fluid Mech., 90 (1979), 129–143 | DOI