@article{ZVMMF_2015_55_8_a5,
author = {M. P. Galanin and V. V. Lukin},
title = {Providing the divergence-free property of the magnetic field when solving the {MHD} equations by the {RKDG} method},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1329--1340},
year = {2015},
volume = {55},
number = {8},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_8_a5/}
}
TY - JOUR AU - M. P. Galanin AU - V. V. Lukin TI - Providing the divergence-free property of the magnetic field when solving the MHD equations by the RKDG method JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2015 SP - 1329 EP - 1340 VL - 55 IS - 8 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_8_a5/ LA - ru ID - ZVMMF_2015_55_8_a5 ER -
%0 Journal Article %A M. P. Galanin %A V. V. Lukin %T Providing the divergence-free property of the magnetic field when solving the MHD equations by the RKDG method %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2015 %P 1329-1340 %V 55 %N 8 %U http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_8_a5/ %G ru %F ZVMMF_2015_55_8_a5
M. P. Galanin; V. V. Lukin. Providing the divergence-free property of the magnetic field when solving the MHD equations by the RKDG method. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 55 (2015) no. 8, pp. 1329-1340. http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_8_a5/
[1] Kulikovskii A. G., Lyubimov G. A., Magnitnaya gidrodinamika, Logos, M., 2005
[2] Kulikovskii A. G., Pogorelov N. V., Semenov A. Yu., Matematicheskie voprosy chislennogo resheniya giperbolicheskikh sistem uravnenii, Fizmatlit, M., 2001 | MR
[3] Brackbill J. U., Barnes B. C., “The effect of nonzero $\nabla\cdot\mathbf{B}$ in the numerical solution of the magnetohydrodynamis equations”, J. Somp. Phys., 35 (1980), 426–430 | MR | Zbl
[4] Galanin M. P., Lukin V. V., “Raznostnaya skhema dlya resheniya dvumernykh zadach idealnoi MGD na nestrukturirovannykh setkakh”, Preprinty IPM im. M. V. Keldysha, 2007, 050, 29 pp.
[5] Biro O., Preis K., “On the use of magnetic vector potential in the finite element analysis of three-dimensional eddy currents”, IEEE Trans. Magn., 25 (1989), 3145–3159 | DOI
[6] Galanin M. P., Popov Yu. P., Kvazistatsionarnye elektromagnitnye polya v neodnorodnykh sredakh: Matematicheskoe modelirovanie, Fizmatlit, M., 1995
[7] Tóth G., “The $\nabla\cdot\mathbf{B}=0$ constraint in shocik-capturing magnetohydrodynamics codes”, J. Comput. Phys., 161 (2000), 605–652 | DOI | MR | Zbl
[8] Landau L. D., Lifshits E. M., Teoreticheskaya fizika, v. VIII, Elektrodinamika sploshnykh sred, Fizmatlit, M., 2001
[9] Galanin M. P., Savenkov E. B., Tokareva S. A., “Reshenie zadach gazovoi dinamiki s udarnymi volnami RKDG-metodom”, Matem. modelirovanie, 20:11 (2008), 55–66 | Zbl
[10] Lukin V. V., Shapovalov K.L., “Primenenie RKDG metoda vtorogo poryadka dlya resheniya dvumernykh uravnenii idealnoi magnitnoi gidrodinamiki”, Vestnik MGTU im. N. E. Baumana. Estestvennye nauki, 2012, Spets. vypusk No 2 “Matematicheskoe modelirovanie v tekhnike”, 98–108
[11] Cockburn V., Shu C.-W., “Runge–Kutta discontinuous Galerkin methods for convection dominated problems”, J. Scientific Computing, 16 (2001), 173–261 | DOI | MR | Zbl
[12] Galanin M. P., Lukin V. V., Shapovalov K. L., “Modelirovanie razvitiya magnitorotatsionnoi neustoichivosti s ispolzovaniem parallelnogo RKDG algoritma dlya sistemy uravnenii MGD”, Vychislitelnye metody i programmirovanie, 15 (2014), 143–153
[13] Skinner M. A., Ostriker E. C., “The Athena astrophysical magnetohydrodynamics code in cylindrical geometry”, The Astrophysical Journal Supplement Series, 188 (2010) | DOI
[14] Mignone A., Bodo G., “Shock-Capturing schemes in computational MHD”, Lecture Notes in Physics, 754, 2008, 71–101 | DOI | Zbl
[15] Rumsey D., Sun T., “A smoothness/shock indicator for the RKDG methods”, Appl. Mathematics Letters, 23:12 (2010), 1425–1431 | DOI | MR | Zbl
[16] Toro E. F., Riemann solvers and numerical methods for fluid dynamics: a practical introduction, Springer-Verlag, Berlin–Heidelberg, 2009 | MR | Zbl
[17] Torrilhon M., “Locally Divergence-preserving upwind finite volume schemes for magnetohydrodynamic equations”, SIAM J. Sci. Comput., 26:4 (2005), 1166–1191 | DOI | MR | Zbl
[18] Roe P., “Characteristic-based schemes for the Euler equations”, Ann. Rev. Fluid Mech., 18 (1986), 337–365 | DOI | MR | Zbl
[19] Orszag A., Tang C., “Small-scale structure of two-dimensional magnetohydrodynamic turbulence”, J. Fluid Mech., 90 (1979), 129–143 | DOI