On an algorithm for solving parabolic and elliptic equations
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 55 (2015) no. 8, pp. 1320-1328 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The present-day rapid growth of computer power, in particular, parallel computing systems of ultrahigh performance requires a new approach to the creation of models and solution algorithms for major problems. An algorithm for solving parabolic and elliptic equations is proposed. The capabilities of the method are demonstrated by solving astrophysical problems on high-performance computer systems with massive parallelism.
@article{ZVMMF_2015_55_8_a4,
     author = {N. D'Ascenzo and V. I. Saveliev and B. N. Chetverushkin},
     title = {On an algorithm for solving parabolic and elliptic equations},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1320--1328},
     year = {2015},
     volume = {55},
     number = {8},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_8_a4/}
}
TY  - JOUR
AU  - N. D'Ascenzo
AU  - V. I. Saveliev
AU  - B. N. Chetverushkin
TI  - On an algorithm for solving parabolic and elliptic equations
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2015
SP  - 1320
EP  - 1328
VL  - 55
IS  - 8
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_8_a4/
LA  - ru
ID  - ZVMMF_2015_55_8_a4
ER  - 
%0 Journal Article
%A N. D'Ascenzo
%A V. I. Saveliev
%A B. N. Chetverushkin
%T On an algorithm for solving parabolic and elliptic equations
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2015
%P 1320-1328
%V 55
%N 8
%U http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_8_a4/
%G ru
%F ZVMMF_2015_55_8_a4
N. D'Ascenzo; V. I. Saveliev; B. N. Chetverushkin. On an algorithm for solving parabolic and elliptic equations. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 55 (2015) no. 8, pp. 1320-1328. http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_8_a4/

[1] Samarskii A. A., Teoriya raznostnykh skhem, Nauka, M., 1989 | MR

[2] Chetverushkin B. N., Kineticheskie skhemy i kvazigazodinamicheskaya sistema uravnenii, Maks-Press, M., 2004

[3] Chetverushkin B. N., “Predely detalizatsii i formulirovka modelei uravnenii sploshnykh sred”, Matem. modelirovanie, 24:11 (2012), 33–52 | MR | Zbl

[4] Repin S. I., Chetverushkin B. N., “Otsenka raznosti priblizhennykh reshenii zadach Koshi dlya parabolicheskogo diffuzionnogo uravneniya i giperbolicheskogo uravneniya s malym parametrom”, Dokl. AN, 451:3 (2013), 255–258 | DOI | Zbl

[5] Samarskii A. A., Gulin A. V., Ustoichivost raznostnykh skhem, Nauka, M., 1973

[6] Chetverushkin B. N., Gulin A. V., “Yavnye skhemy i modelirovanie na vychislitelnykh sistemakh sverkhvysokoi proizvoditelnosti”, Dokl. AN, 446:5 (2012), 501–503 | Zbl

[7] Roi A., Dvizhenie po orbitam, Mir, M., 1981

[8] Chetverushkin B. N., D'Aschenzo N., Savelev V. I., “Kineticheskie soglasovannye uravneniya magnitnoi gazodinamiki i ikh ispolzovanie v vysokoproizvoditelnykh vychisleniyakh”, Dokl. AN, 457:5 (2014), 526–529 | DOI | Zbl

[9] Chetverushkin B., D'Ascenzo N., Ishanov S., Saveliev V., “Hyperbolic type explicit kinetic scheme of magneto gas dynamics for high performance computing systems”, Russ. J. Numer. Anal. and Math. Modelling, 30:1 (2015), 27–36 | DOI | MR | Zbl