Application of the Schwarz alternating method for simulating the contact interaction of a system of bodies
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 55 (2015) no. 8, pp. 1429-1443 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A numerical algorithm for simulating the multicontact thermoelastic interaction of a system of many bodies is developed. The algorithm is based on the iterative Schwarz alternating method modified for the class of problems under consideration. The nonlinear differential problem in question is discretized using the finite element method. Numerical results are presented, including the thermomechanical interaction of 350 bodies.
@article{ZVMMF_2015_55_8_a13,
     author = {M. P. Galanin and V. V. Lukin and A. S. Rodin and I. V. Stankevich},
     title = {Application of the {Schwarz} alternating method for simulating the contact interaction of a system of bodies},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1429--1443},
     year = {2015},
     volume = {55},
     number = {8},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_8_a13/}
}
TY  - JOUR
AU  - M. P. Galanin
AU  - V. V. Lukin
AU  - A. S. Rodin
AU  - I. V. Stankevich
TI  - Application of the Schwarz alternating method for simulating the contact interaction of a system of bodies
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2015
SP  - 1429
EP  - 1443
VL  - 55
IS  - 8
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_8_a13/
LA  - ru
ID  - ZVMMF_2015_55_8_a13
ER  - 
%0 Journal Article
%A M. P. Galanin
%A V. V. Lukin
%A A. S. Rodin
%A I. V. Stankevich
%T Application of the Schwarz alternating method for simulating the contact interaction of a system of bodies
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2015
%P 1429-1443
%V 55
%N 8
%U http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_8_a13/
%G ru
%F ZVMMF_2015_55_8_a13
M. P. Galanin; V. V. Lukin; A. S. Rodin; I. V. Stankevich. Application of the Schwarz alternating method for simulating the contact interaction of a system of bodies. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 55 (2015) no. 8, pp. 1429-1443. http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_8_a13/

[1] Galin L. A., Razvitie teorii kontaktnykh zadach, Nauka, M., 1976

[2] Burago N. G., Kukudzhanov V. N., “Obzor kontaktnykh algoritmov”, MTT, 2005, no. 1, 45–87 | MR

[3] Zenkevich O., Metod konechnykh elementov v tekhnike, Mir, M., 1975

[4] Segerlind L., Primenenie metoda konechnykh elementov, Mir, M., 1979

[5] Streng G., Fiks Dzh., Teoriya metoda konechnykh elementov, Mir, M., 1977 | MR

[6] Syarle F., Metod konechnykh elementov dlya ellipticheskikh zadach, Mir, M., 1980 | MR

[7] Zarubin V. S., Stankevich I. V., Raschet teplonapryazhennykh konstruktsii, Mashinostr., M., 2005

[8] Kotovich A. V., Stankevich I. V., Reshenie zadach teorii uprugosti metodom konechnykh elementov, Izd-vo MGTU im. N. E. Baumana, M., 2012

[9] Galanin M. P., Krupkin A. V., Kuznetsov V. I., Lukin V. V., Novikov V. V., Rodin A. S., Stankevich I. V., “Matematicheskoe modelirovanie termouprugoplasticheskogo kontaktnogo vzaimodeistviya sistemy tel”, Mathematica Montisnigri, 30 (2014), 99–114 | MR

[10] Galanin M. P., Savenkov E. B., Metody chislennogo analiza matematicheskikh modelei, Izd-vo MGTU, M., 2010

[11] Bate K. Yu., Metody konechnykh elementov, Fizmatlit, M., 2010

[12] Ilin V. P., Metody i tekhnologii konechnykh elementov, Izd. IVM i MG SO RAN, Novosibirsk, 2007

[13] Stankevich I. V., Yakovlev M. E., Si Tu Khtet, “Razrabotka algoritma kontaktnogo vzaimodeistviya na osnove alterniruyuschego metoda Shvartsa”, Vestn. MGTU im. N. E. Baumana. Ser. “Estestvennye nauki”, 2011, Spetsvypusk: Prikl. matem., 134–141

[14] Marchuk G. I., Metody vychislitelnoi matematiki, Nauka, M., 1989 | MR

[15] Toselli A., Widlund O., Domain decomposition methods — algorithms and theory, Springer, Berlin, 2005 | MR | Zbl

[16] Tsvik L. B., “Printsip poocherednoi nepreryvnosti pri reshenii zadach teorii polya po chastyam”, Dokl. AN SSSR, 243:1 (1978), 74–77 | MR

[17] Tsvik L. B., “Printsip poocherednosti v zadachakh o sopryazhenii i kontakte tverdykh deformiruemykh tel”, Prikl. mekhan., 16:1 (1980), 13–18

[18] Galanin M. P., Gorbunov-Posadov M. M., Ermakov A. V., Lukin V. V., Rodin A. S., Shapovalov K. L., “Prototip integrirovannoi programmnoi platformy dlya soprovozhdeniya vychislitelnogo eksperimenta v kompleksnykh zadachakh matematicheskogo modelirovaniya”, Tr. In-ta sistemnogo programmirovaniya, 26:3 (2014), 51–68