@article{ZVMMF_2015_55_8_a11,
author = {K. V. Brushlinskii and A. N. Kozlov and V. S. Konovalov},
title = {Numerical models of steady-state and pulsating flows of self-ionizing gas in plasma accelerator channels},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1405--1416},
year = {2015},
volume = {55},
number = {8},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_8_a11/}
}
TY - JOUR AU - K. V. Brushlinskii AU - A. N. Kozlov AU - V. S. Konovalov TI - Numerical models of steady-state and pulsating flows of self-ionizing gas in plasma accelerator channels JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2015 SP - 1405 EP - 1416 VL - 55 IS - 8 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_8_a11/ LA - ru ID - ZVMMF_2015_55_8_a11 ER -
%0 Journal Article %A K. V. Brushlinskii %A A. N. Kozlov %A V. S. Konovalov %T Numerical models of steady-state and pulsating flows of self-ionizing gas in plasma accelerator channels %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2015 %P 1405-1416 %V 55 %N 8 %U http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_8_a11/ %G ru %F ZVMMF_2015_55_8_a11
K. V. Brushlinskii; A. N. Kozlov; V. S. Konovalov. Numerical models of steady-state and pulsating flows of self-ionizing gas in plasma accelerator channels. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 55 (2015) no. 8, pp. 1405-1416. http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_8_a11/
[1] Morozov A. I., “Printsipy koaksialnykh (kvazi)statsionarnykh plazmennykh uskoritelei (KSPU)”, Fizika plazmy, 16:2 (1990), 131–146
[2] Brushlinskii K. V., Zaborov A. M., Kozlov A. N., Morozov A. I., Savelev V. V., “Chislennoe modelirovanie techenii plazmy v KSPU”, Fizika plazmy, 16:2 (1990), 147–157
[3] Volkov Ya. F., Kulik N. V., Marinin N. V., Morozov A. I. i dr., “Analiz parametrov potoka plazmy, generiruemykh polnoblochnym KSPU Kh-50”, Fizika plazmy, 18:11 (1992), 1392–1402
[4] Brushlinskii K. V., Morozov A. I., “Raschet dvumernykh techenii plazmy v kanalakh”, Voprosy teorii plazmy, 8, ed. M. A. Leontovich, Atomizdat, M., 1974, 88–163
[5] Brushlinskii K. V., Matematicheskie i vychislitelnye zadachi magnitnoi gazodinamiki, Binom. Laboratoriya znanii, M., 2009, 200 pp.
[6] Brushlinskii K. V., Kalugin G. A., Kozlov A. N., “Chislennoe modelirovanie techeniya ionizuyuschegosya gaza v kanale”, Preprinty IPM im. M. V. Keldysha, 1982, 50, 28 pp.
[7] Brushlinskii K. V., “Chislennoe modelirovanie techenii ionizuyuschegosya gaza v kanalakh”, Dvumernye chislennye modeli plazmy, eds. N. P. Kozlov, A. I. Morozov, Nauka, M., 1984, 139–151
[8] Brushlinskii K. V., “Chislennye modeli techenii ionizuyuschegosya gaza”, Entsiklopediya nizkotemperaturnoi plazmy. Seriya B, Ch. 2, v. VII-1, ed. V. E. Fortov, YaNUS-K, M., 2008, 84–90
[9] Kozlov A. N., “Dvumernyi kharakter neustoichivosti techenii ionizuyuschegosya gaza v kanale plazmennogo uskoritelya”, Izv. AN SSSR. MZhG, 1983, no. 2, 187–189
[10] Kozlov A. N., “Kinetika ionizatsii i rekombinatsii v kanale plazmennogo uskoritelya”, Izv. RAN. MZhG, 2000, no. 5, 181–188 | Zbl
[11] Biberman L. M., Vorobev V. S., Yakubov I. T., Kinetika neravnovesnoi nizkotemperaturnoi plazmy, Nauka, M., 1982, 375 pp.
[12] Barmin A. A., Kozlov A. N., “Struktura statsionarnogo fronta ionizatsii v kanale plazmennogo uskoritelya”, Izv. RAN. MZhG, 2013, no. 4, 155–167 | Zbl
[13] Tikhonov A. N., Samarskii A. A., Zaklyazminskii L. A. i dr., “Nelineinyi effekt obrazovaniya samopodderzhivayuschegosya vysokotemperaturnogo elektroprovodnogo sloya gaza v nestatsionarnykh protsessakh magnitnoi gidrodinamiki”, Dokl. AN SSSR, 173:4 (1967), 808–811
[14] Samarskii A. A., Kurdyumov S. P., Kulikov Yu. N., Leskov L. V., Popov Yu. P., Savichev V. V., Filipov S. S., “Magnitogidrodinamicheskaya model nestatsionarnogo uskoreniya plazmy”, Dokl. AN SSSR, 206:2 (1972), 307–310
[15] Zeldovich Ya. B., Raizer Yu. P., Fizika udarnykh voln i vysokotemperaturnykh gidrodinamicheskikh yavlenii, Nauka, M., 1966, 686 pp.
[16] Chetverushkin B. N., Matematicheskoe modelirovanie zadach dinamiki izluchayuschego gaza, Nauka, M., 1985, 304 pp.
[17] Kozlov A. N., Garkusha I. E., Konovalov V. S., Novikov V. G., “The radiation intensity of the Lyman alpha line at ionization front in the quasi-steady plasma accelerator”, Problems of Atomic Science and Technology. Series: Plasma Physics, 2013, no. 1, 128–130
[18] Nikiforov A. F., Novikov V. G., Uvarov V. B., Kvantovo-statisticheskie modeli vysokotemperaturnoi plazmy, Fizmatlit, M., 2000, 399 pp.
[19] Braginskii S. I., “Yavleniya perenosa v plazme”, Voprosy teorii plazmy, 1, ed. M. A. Leontovich, Atomizdat, M., 1963, 183–272
[20] Granovskii V. L., Elektricheskii tok v gaze, Nauka, M., 1971, 543 pp.
[21] Vatazhin A. B., Lyubimov G. A., Regirer S. A., Magnitogidrodinamicheskie techeniya v kanalakh, Fizmatlit, M., 1970, 672 pp.
[22] Brushlinskii K. V., Favorskii A. P., Kholodov A. S., “Obschie zamechaniya o chislennykh metodakh resheniya MGD-zadach”, Entsiklopediya nizkotemperaturnoi plazmy. Ser. B, Ch. 2, razd. VI, gl. 1, v. VII-1, ed. V. E. Fortov, Yanus-K, M., 2008, 77–83
[23] Kulikovskii A. G., Pogorelov N. V., Semenov A. Yu., Matematicheskie voprosy chislennogo resheniya giperbolicheskikh sistem uravnenii, Fizmatlit, M., 2001, 608 pp. | MR
[24] Oran E., Boris Dzh., Chislennoe modelirovanie reagiruyuschikh potokov, Mir, M., 1990, 661 pp. | MR
[25] Degtyarev L. M., Favorskii A. P., “Potokovyi variant metoda progonki dlya raznostnykh zadach s silno menyayuschimisya koeffitsientami”, Zhurn. vychisl. matem. i matem. fiz., 9:1 (1969), 211–218 | MR | Zbl
[26] Barmin A. A., Glinov A. P., Kulikovskii A. G., “Vozniknovenie periodicheskikh rezhimov v statsionarnykh sverkhzvukovykh MGD-techeniyakh vsledstvie vyklyucheniya elektroprovodnosti sredy”, Izv. AN SSSR. MZhG, 1985, no. 4, 138–149 | Zbl
[27] Morozov A. I., Vvedenie v plazmodinamiku, Fizmatlit, M., 2006, 613 pp.
[28] Tereshin V. I., Bandura A. N., Byrka O. V., Chebotarev V. V., Garkusha I. E., Landman I., Makhlaj V. A., Neklyudov I. M., Solyakov D. G., Tsarenko A. V., “Application of powerful quasi-steady-state plasma accelerators for simulation of ITER transient heat loads on divertor surfaces”, Plasma Phys. Contr. Fusion, 49 (2007), A231–A239 | DOI
[29] Klimov N., Podkovyrov V., Zhitlukhin A., Kovalenko D., Bazylev B., Landman I., Pestchanyi S., Janeschitz G., Federici G., Merola M., Loarte A., Linke J., Hirai T., Compan J., “Experimental study of PFCs erosion under ITER-like transient loads at plasma gun facility QSPA”, J. Nuclear Materials, 390–391 (2009), 721–726 | DOI
[30] Astashynski V. M., Ananin S. I., Askerko V. V., Kostyukevich E. A., Kuzmitski A. M., Uglov V. V., Anishchik V. M., Astashynski V. V., Kvasov N. T., Danilyuk L. A., “Materials surface modification using quasi-stationary plasma accelerators”, J. Surface and Coating Technology, 180–181 (2004), 392–395 | DOI