The Riemann problem in the quasi-one-dimensional approximation
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 55 (2015) no. 8, pp. 1391-1404 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The classical one-dimensional Riemann problem is generalized to the quasi-one-dimensional case. A plane slotted channel with a discontinuous cross section is considered. The resulting exact self-similar solution is compared with numerical results obtained for a system of quasi-onedimensional and two-dimensional equations. It is shown that they are in good qualitative agreement and, for certain parameters, also agree well quantitatively.
@article{ZVMMF_2015_55_8_a10,
     author = {M. V. Abakumov and Yu. P. Popov and P. V. Rodionov},
     title = {The {Riemann} problem in the quasi-one-dimensional approximation},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1391--1404},
     year = {2015},
     volume = {55},
     number = {8},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_8_a10/}
}
TY  - JOUR
AU  - M. V. Abakumov
AU  - Yu. P. Popov
AU  - P. V. Rodionov
TI  - The Riemann problem in the quasi-one-dimensional approximation
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2015
SP  - 1391
EP  - 1404
VL  - 55
IS  - 8
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_8_a10/
LA  - ru
ID  - ZVMMF_2015_55_8_a10
ER  - 
%0 Journal Article
%A M. V. Abakumov
%A Yu. P. Popov
%A P. V. Rodionov
%T The Riemann problem in the quasi-one-dimensional approximation
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2015
%P 1391-1404
%V 55
%N 8
%U http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_8_a10/
%G ru
%F ZVMMF_2015_55_8_a10
M. V. Abakumov; Yu. P. Popov; P. V. Rodionov. The Riemann problem in the quasi-one-dimensional approximation. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 55 (2015) no. 8, pp. 1391-1404. http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_8_a10/

[1] Samarskii A. A., Popov Yu. P., Raznostnye metody resheniya zadach gazovoi dinamiki, Nauka, M., 1992 | MR

[2] Brushlinskii K. V., Matematicheskie i vychislitelnye zadachi magnitnoi gazodinamiki, BINOM. Laboratoriya znanii, M., 2009

[3] Koshelev V. B., Mukhin S. I., Sosnin N. V., Favorskii A. P., Matematicheskie modeli kvaziodnomernoi gemodinamiki, Metodicheskoe posobie, MAKS Press, M., 2010

[4] Aliev I. V., Gerasimov B. P., Iskender-zade F. A., Popov Yu. P., Chislennoe modelirovanie techeniya vyazkoi neszhimaemoi zhidkosti v kanale s gibkimi stenkami, IPM, M., 1987

[5] Landau L. D., Lifshits E. M., Teoreticheskaya fizika, v. VI, Mekhanika sploshnykh sred, Gostekhteorizdat, M., 1953

[6] Kurant G., Fridrikhs K., Sverkhzvukovoe techenie i udarnye volny, IL, M., 1950

[7] Zeldovich Ya. B., Raizer Yu. P., Fizika udarnykh voln i vysokotemperaturnykh gidrodinamicheskikh yavlenii, Nauka, M., 1966

[8] Sedov L. I., Metody podobiya i razmernosti v mekhanike, Nauka, M., 1981 | MR

[9] Korobeinikov V. P., Melnikova N. S., Ryazanov E. V., Teoriya tochechnogo vzryva, Fizmatgiz, M., 1961

[10] Godunov S. K., “Raznostnyi metod chislennogo rascheta razryvnykh reshenii gidrodinamiki”, Matem. sb., 47(89):3 (1959), 271–306 | MR | Zbl

[11] Godunov S. K., Zabrodin A. V., Prokopov G. P., “Raznostnaya skhema dlya dvumernykh nestatsionarnykh zadach gazovoi dinamiki i raschet obtekaniya s otoshedshei udarnoi volnoi”, Zh. vychisl. matem. i matem. fiz., 1:6 (1961), 1020–1050 | MR | Zbl

[12] Roe P. L., “Characteristic-based schemes for the Euler equations”, Ann. Rev. Fluid Mech., 18 (1986), 337–365 | DOI | MR | Zbl

[13] Einfeldt B., “On Godunov-type methods for gas dynamics”, SIAM J. Numer. Anal., 25:2 (1988), 294–318 | DOI | MR | Zbl

[14] Chakravarthy S. R., Osher S., A new class of high accuracy TVD schemes for hyperbolic conservation laws, AIAA Pap., No 85-0363, 1985