@article{ZVMMF_2015_55_8_a1,
author = {G. G. Elenin and T. G. Elenina},
title = {A one-parameter family of difference schemes for the numerical solution of the {Keplerian} problem},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1292--1298},
year = {2015},
volume = {55},
number = {8},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_8_a1/}
}
TY - JOUR AU - G. G. Elenin AU - T. G. Elenina TI - A one-parameter family of difference schemes for the numerical solution of the Keplerian problem JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2015 SP - 1292 EP - 1298 VL - 55 IS - 8 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_8_a1/ LA - ru ID - ZVMMF_2015_55_8_a1 ER -
%0 Journal Article %A G. G. Elenin %A T. G. Elenina %T A one-parameter family of difference schemes for the numerical solution of the Keplerian problem %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2015 %P 1292-1298 %V 55 %N 8 %U http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_8_a1/ %G ru %F ZVMMF_2015_55_8_a1
G. G. Elenin; T. G. Elenina. A one-parameter family of difference schemes for the numerical solution of the Keplerian problem. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 55 (2015) no. 8, pp. 1292-1298. http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_8_a1/
[1] Hairer E., Lubich C., Wanner G., Geometric numerical integration, 2nd ed., Springer, Berlin, 2006 | MR | Zbl
[2] Verlet L., “Computer “experiments” on classical fluids. I: Thermodynamical properties Lennard–Jones molecules”, Phys. Rev., 159 (1967), 98–103 | DOI
[3] LaBudde R. A., Greenspen D., “Discrete mechanics. A general treatment”, J. Comput. Phys., 15 (1974), 134–167 | DOI | MR | Zbl
[4] Minesaki Y., Nakamura Y., “A new discretization of the Kepler motion which conserves the Runge–Lenz vector”, Phys. Lett. A, 306 (2002), 127–133 | DOI | MR | Zbl
[5] Kozlov R., “Conservative discretizations of the Keplerian motions”, J. Phys. A: Math. Theor., 40 (2007), 4529–4539 | DOI | MR | Zbl
[6] Cieśliński J. L., “An orbit-preserving discretization of the classical Keplerian problem”, Phys. Lett. A, 370 (2007), 8–12 | DOI | MR | Zbl
[7] Elenin G. G., Shlyakhov P. I., “Geometricheskaya struktura prostranstva parametrov semeistva simplekticheskikh metodov Runge–Kutty”, Matem. modelirovanie, 23:5 (2011), 16–34 | MR | Zbl
[8] Landau L. D., Lifshits E. M., Mekhanika, Nauka, M., 1973