Reflection of a plane sound wave from the boundary of a heterogeneous medium consisting of elastic and viscoelastic layers
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 55 (2015) no. 7, pp. 1208-1220 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The reflection of a plane sound wave incident normally on the flat boundary of a layered heterogeneous medium is considered. The heterogeneous medium consists of periodically alternating layers of elastic and viscoelastic isotropic materials. All the layers are assumed to be parallel or perpendicular to the wavefront and each layer is much thinner than the sound wavelength. The problem is studied using a homogenized model of the layered heterogeneous medium. Specifically, the complex amplitudes of the reflected and transmitted waves are determined as functions of frequency.
@article{ZVMMF_2015_55_7_a9,
     author = {V. V. Shumilova},
     title = {Reflection of a plane sound wave from the boundary of a heterogeneous medium consisting of elastic and viscoelastic layers},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1208--1220},
     year = {2015},
     volume = {55},
     number = {7},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_7_a9/}
}
TY  - JOUR
AU  - V. V. Shumilova
TI  - Reflection of a plane sound wave from the boundary of a heterogeneous medium consisting of elastic and viscoelastic layers
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2015
SP  - 1208
EP  - 1220
VL  - 55
IS  - 7
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_7_a9/
LA  - ru
ID  - ZVMMF_2015_55_7_a9
ER  - 
%0 Journal Article
%A V. V. Shumilova
%T Reflection of a plane sound wave from the boundary of a heterogeneous medium consisting of elastic and viscoelastic layers
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2015
%P 1208-1220
%V 55
%N 7
%U http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_7_a9/
%G ru
%F ZVMMF_2015_55_7_a9
V. V. Shumilova. Reflection of a plane sound wave from the boundary of a heterogeneous medium consisting of elastic and viscoelastic layers. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 55 (2015) no. 7, pp. 1208-1220. http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_7_a9/

[1] Bakhvalov N. S., Panasenko G. P., Osrednenie protsessov v periodicheskikh sredakh, Nauka, M., 1984 | MR

[2] Sanches-Palensiya E., Neodnorodnye sredy i teoriya kolebanii, Mir, M., 1984 | MR

[3] Oleinik O. A., Iosifyan G. A., Shamaev A. S., Matematicheskie zadachi teorii silno neodnorodnykh uprugikh sred, Izd-vo MGU, M., 1990

[4] Zhikov V. V., Kozlov S. M., Oleinik O. A., Usrednenie differentsialnykh operatorov, Nauka, M., 1993 | MR

[5] Bardzokas D. I., Zobnin A. I., Matematicheskoe modelirovanie fizicheskikh protsessov v kompozitsionnykh materialakh periodicheskoi struktury, Editorial URSS, M., 2003

[6] Pyatnitskii A. L., Chechkin G. A., Shamaev A. S., Usrednenie. Metody i prilozheniya, Tamara Rozhkovskaya, Novosibirsk, 2007

[7] Sanchez-Hubert J., “Asymptotic study of the macroscopic behavior of a solid-liquid mixture”, Math. Methods Appl. Sci., 1980, no. 2, 158–190 | MR

[8] Gilbert R. P., Mikelic A., “Homogenizing the acoustic properties of the seabed, I”, Nonlinear Analys., 40:1 (2000), 185–212 | MR | Zbl

[9] Shamaev A. S., Shumilova V. V., “Usrednenie uravnenii akustiki dlya vyazkouprugogo materiala s kanalami, zapolnennymi vyazkoi szhimaemoi zhidkostyu”, Izvestiya RAN. MZhG, 2011, no. 2, 92–103

[10] Shamaev A. S., Shumilova V. V., “Usrednenie uravnenii akustiki dlya poristogo vyazkouprugogo materiala s dolgovremennoi pamyatyu, zapolnennogo vyazkoi zhidkostyu”, Differents. ur-niya, 48:8 (2012), 1174–1186 | MR | Zbl

[11] Shamaev A. S., Shumilova V. V., “O spektre odnomernykh kolebanii kompozita, sostoyaschego iz sloev uprugogo i vyazkouprugogo materialov”, Sibirskii zhurnal industr. matem., 15:4 (2012), 124–134 | Zbl

[12] Shamaev A. S., Shumilova V. V., “O spektre odnomernykh kolebanii v srede iz sloev uprugogo materiala i vyazkouprugogo materiala Kelvina–Foigta”, Zh. vychisl. matem. i matem. fiz., 53:2 (2013), 282–290 | Zbl

[13] Brekhovskikh L. M., Godin O. A., Akustika sloistykh sred, Nauka, M., 1989

[14] Kristensen R., Vvedenie v mekhaniku kompozitov, Mir, M., 1982

[15] Pobedrya B. E., Mekhanika kompozitsionnykh materialov, MGU, M., 1984

[16] Rytov S. M., “Akusticheskie svoistva melkodispersnoi sredy”, Akusticheskii zh., 2:1 (1956), 71–83 | MR

[17] Brekhovskikh L. M., Volny v sloistykh sredakh, Nauka, M., 1973

[18] Shvidanenko A. M., “Rasprostranenie voln v vyazkouprugoi sloistoi srede”, Akusticheskii zh., 19:5 (1973), 791–794

[19] Molotkov L. A., Matrichnyi metod v teorii rasprostraneniya voln v sloistykh uprugikh i zhidkikh sredakh, Nauka, L., 1984

[20] Kennet B. L. N., Seismic wave propagation in stratified media, Cambridge University Press, Cambridge, 1983, 342 pp. | MR

[21] Gilbert K. E., “A propagator matrix method for periodically stratified media”, J. Acoust. Soc. Am., 73:1 (1983), 137–142 | MR | Zbl

[22] Stovas A., Arntsen B., “Vertical propagation of low-frequency waves in finely layered media”, Geophysics, 71:3 (2006), T87–T94

[23] Ilyushin A. A., Pobedrya B. E., Osnovy matematicheskoi teorii termovyazkouprugosti, Nauka, M., 1970 | MR