Hybrid running schemes with upwind and bicompact symmetric differencing for hyperbolic equations
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 55 (2015) no. 7, pp. 1196-1207 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

New hybrid difference schemes are proposed for computing discontinuous solutions of hyperbolic equations. Involved in these schemes, a bicompact scheme that is third-order accurate in time and fourth-order accurate in space is monotonized using several partner schemes, namely, a first-order accurate explicit upwind scheme and two bicompact schemes of second and fourth orders of accuracy in space, both of the first order of accuracy in time. Their total domain of monotonicity covers all Courant numbers. An algorithm for automatically choosing the most suitable partner scheme is constructed. The mechanism of switching between high- and low-order accurate schemes is rigorously substantiated. All the schemes used can be efficiently implemented by applying the running calculation method. The hybrid schemes proposed have been tested on a model two-dimensional explosion problem in an ideal gas.
@article{ZVMMF_2015_55_7_a8,
     author = {M. D. Bragin and B. V. Rogov},
     title = {Hybrid running schemes with upwind and bicompact symmetric differencing for hyperbolic equations},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1196--1207},
     year = {2015},
     volume = {55},
     number = {7},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_7_a8/}
}
TY  - JOUR
AU  - M. D. Bragin
AU  - B. V. Rogov
TI  - Hybrid running schemes with upwind and bicompact symmetric differencing for hyperbolic equations
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2015
SP  - 1196
EP  - 1207
VL  - 55
IS  - 7
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_7_a8/
LA  - ru
ID  - ZVMMF_2015_55_7_a8
ER  - 
%0 Journal Article
%A M. D. Bragin
%A B. V. Rogov
%T Hybrid running schemes with upwind and bicompact symmetric differencing for hyperbolic equations
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2015
%P 1196-1207
%V 55
%N 7
%U http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_7_a8/
%G ru
%F ZVMMF_2015_55_7_a8
M. D. Bragin; B. V. Rogov. Hybrid running schemes with upwind and bicompact symmetric differencing for hyperbolic equations. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 55 (2015) no. 7, pp. 1196-1207. http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_7_a8/

[1] Godunov S. K., “Raznostnyi metod chislennogo rascheta razryvnykh reshenii uravnenii gidrodinamiki”, Matem. sb., 47(89):3 (1959), 271–306 | MR | Zbl

[2] Lax P. D., “Weak solutions of nonlinear hyperbolic equations and their numerical approximation”, Comm. Pure Appl. Math., 7:1 (1954), 159–193 | MR | Zbl

[3] Tolstykh A. I., Kompaktnye raznostnye skhemy i ikh primenenie v zadachakh aerogidrodinamiki, Nauka, M., 1990 | MR

[4] Mikhailovskaya M. N., Rogov B. V., “Monotonnye kompaktnye skhemy beguschego scheta dlya sistem uravnenii giperbolicheskogo tipa”, Zh. vychisl. matem. i matem. fiz., 52:4 (2012), 672–695 | Zbl

[5] Rogov B. V., “Vysokotochnaya monotonnaya kompaktnaya skhema beguschego scheta dlya mnogomernykh uravnenii giperbolicheskogo tipa”, Zh. vychisl. matem. i matem. fiz., 53:2 (2013), 264–274 | Zbl

[6] Rogov B. V., Mikhailovskaya M. N., “O skhodimosti kompaktnykh raznostnykh skhem”, Matem. modelirovanie, 20:1 (2008), 99–116 | MR | Zbl

[7] Lele S. K., “Compact finite difference schemes with spectral-like resolution”, J. Comput. Phys., 103:1 (1992), 16–42 | MR | Zbl

[8] Lax P. D., “Gibbs phenomena”, J. Sci. Computing, 28:2/3 (2006), 445–449 | MR | Zbl

[9] Cockburn B., Shu C.-W., “Nonlinearly stable compact schemes for shock calculations”, SIAM J. Numer. Anal., 31:3 (1994), 607–627 | MR | Zbl

[10] Tolstykh A. I., Shirobokov D. A., “O raznostnykh skhemakh s kompaktnymi approksimatsiyami pyatogo poryadka dlya prostranstvennykh techenii vyazkogo gaza”, Zh. vychisl. matem. i matem. fiz., 36:4 (1996), 71–85 | MR | Zbl

[11] Yee H. C., “Explicit and implicit multidimensional compact high-resolution shock-capturing methods: Formulation”, J. Comput. Phys., 131:1 (1997), 216–232 | Zbl

[12] Ravichandran K. S., “Higher order KFVS algorithms using compact upwind difference operators”, J. Comput. Phys., 130:2 (1997), 161–173 | Zbl

[13] Tolstykh A. I., Lipavskii M. V., “On performance of methods with third- and fifth-order compact upwind differencing”, J. Comput. Phys., 140:2 (1998), 205–232 | MR | Zbl

[14] Ostapenko V. V., “Simmetrichnye kompaktnye skhemy s iskusstvennymi vyazkostyami povyshennogo poryadka divergentnosti”, Zh. vychisl. matem. i matem. fiz., 42:7 (2002), 1019–1038 | MR | Zbl

[15] Cook A. W., Cabot W. H., “A high-wavenumber viscosity for high resolution numerical method”, J. Comput. Phys., 195 (2004), 594–601 | Zbl

[16] Fiorina B., Lele S. K., “An artificial nonlinear diffusivity method for supersonic reacting flows with shocks”, J. Comput. Phys., 222 (2006), 246–264 | MR

[17] Ekaterinaris J. A., “Implicit, high-resolution, compact schemes for gas dynamics and aeroacoustics”, J. Comput. Phys., 156:2 (1999), 272–299 | MR | Zbl

[18] Visbal M. R., Gaitonde D. V., “High order-accurate methods for complex unsteady subsonic flows”, AIAA Journal, 37:10 (1999), 1231–1239

[19] Yee H. C., Sandham N. D., Djomehri M. J., “Low-dissipative high-order shock-capturing methods using characteristic-based filters”, J. Comput. Phys., 150:1 (1999), 199–238 | MR | Zbl

[20] Yee H. C., Sjögreen B., “Adaptive filtering and limiting in compact high order methods for multiscale gas dynamics and MHD systems”, Computers Fluids, 37:5 (2008), 593–619 | MR | Zbl

[21] Bogey C., de Cacqueray N., Bailly C., “A shock-capturing methodology based on adaptive spatial filtering for high-order non-linear computations”, J. Comput. Phys., 228:5 (2009), 1447–1465 | MR | Zbl

[22] Darian H. M., Esfahanian V., Hejranfar K., “A shock-detecting sensor for filtering of high-order compact finite difference schemes”, J. Comput. Phys., 230:3 (2011), 494–514 | MR | Zbl

[23] Adams N. A., Shariff K., “A high-resolution hybrid compact-ENO scheme for shock-turbulence interaction problems”, J. Comput. Phys., 127:1 (1996), 27–51 | MR | Zbl

[24] Pirozzoli S., “Conservative hybrid compact-WENO schemes for shock-turbulence interaction”, J. Comput. Phys., 178:1 (2002), 81–117 | MR | Zbl

[25] Ren Y.-X., Liu M., Zhang H., “A characteristic-wise hybrid compact-WENO scheme for solving hyperbolic conservation laws”, J. Comput. Phys., 192:2 (2003), 365–386 | MR | Zbl

[26] Shen Y., Yang G., “Hybrid finite compact-WENO schemes for shock calculation”, Int. J. Numer. Meth. Fluids, 53:4 (2007), 531–560 | MR | Zbl

[27] Deng X., Maekawa H., “Compact high-order accurate nonlinear schemes”, J. Comput. Phys., 130:1 (1997), 77–91 | MR | Zbl

[28] Deng X., Zhang H., “Developing high-order weighted compact nonlinear schemes”, J. Comput. Phys., 165:1 (2000), 22–44 | MR | Zbl

[29] Jiang L., Shan H., Liu C. Q., “Weighted compact scheme for shock capturing”, Int. J. Comput. Fluid Dyn., 15:2 (2001), 147–155 | MR | Zbl

[30] Zhang S., Jiang S., Shu C.-W., “Development of nonlinear weighted compact schemes with increasingly higher order accuracy”, J. Comput. Phys., 227:15 (2008), 7294–7321 | MR | Zbl

[31] Oliveira M. L., Xie P., Su J., Liu C., Modified weighted compact scheme for shock-boundary layer interaction and double cone, AIAA Paper 2008-755

[32] Ghosh D., Baeder J. D., “Compact reconstruction schemes with weighted ENO limiting for hyperbolic conservation laws”, SIAM J. Sci. Comput., 34:3 (2012), A1678–A1706 | MR | Zbl

[33] Rogov B. V., Mikhailovskaya M. N., “Monotonnye bikompaktnye skhemy dlya lineinogo uravneniya perenosa”, Dokl. AN, 436:5 (2011), 600–605 | Zbl

[34] Kulikovskii A. G., Pogorelov N. V., Semenov A. Yu., Matematicheskie voprosy chislennogo resheniya giperbolicheskikh sistem uravnenii, Fizmatlit, M., 2012

[35] Tolstykh A. I., “O gibridnykh skhemakh s multioperatorami vysokogo poryadka dlya scheta razryvnykh reshenii”, Zh. vychisl. matem. i matem. fiz., 53:9 (2013), 1481–1502 | Zbl

[36] Toro E. F., Riemann solvers and numerical methods for fluid dynamics: a practical introduction, Springer, 2009 | MR | Zbl

[37] Shu C.-W., “Efficient implementation of essentially non-oscillatory shock-capturing schemes”, J. Comput. Phys., 77:2 (1988), 439–471 | MR | Zbl

[38] Gottlieb S., Ketcheson D., Shu C.-W., Strong stability preserving Runge–Kutta and multistep time discretizations, World Scientific, 2011 | MR | Zbl

[39] Fedorenko R. P., “Primenenie raznostnykh skhem vysokoi tochnosti dlya chislennogo resheniya giperbolicheskikh uravnenii”, Zh. vychisl. matem. i matem. fiz., 2:6 (1962), 1122–1128 | MR | Zbl

[40] Chikitkin A. V., Rogov B. V., Utyuzhnikov S. V., “High-order accurate monotone compact running scheme for multidimensional hyperbolic equations”, Applied Numerical Mathematics, 93 (2014), 150–153 | MR

[41] Wornom S. F., “Application of two-point implicit central-difference methods to hyperbolic systems”, Computers Fluids, 20:3 (1991), 321–331 | MR | Zbl

[42] Kholodov A. S., Kholodov Ya. A., “O kriteriyakh monotonnosti raznostnykh skhem dlya uravnenii giperbolicheskogo tipa”, Zh. vychisl. matem. i matem. fiz., 46:9 (2006), 1638–1667 | MR

[43] Khairer E., Vanner G., Reshenie obyknovennykh differentsialnykh uravnenii. Zhestkie i differentsialno-algebraicheskie zadachi, Mir, M., 1999

[44] Shokin Yu. I., Yanenko H. H., Metod differentsialnogo priblizheniya. Primenenie k gazovoi dinamike, Nauka, Novosibirsk, 1985 | MR