@article{ZVMMF_2015_55_7_a8,
author = {M. D. Bragin and B. V. Rogov},
title = {Hybrid running schemes with upwind and bicompact symmetric differencing for hyperbolic equations},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1196--1207},
year = {2015},
volume = {55},
number = {7},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_7_a8/}
}
TY - JOUR AU - M. D. Bragin AU - B. V. Rogov TI - Hybrid running schemes with upwind and bicompact symmetric differencing for hyperbolic equations JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2015 SP - 1196 EP - 1207 VL - 55 IS - 7 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_7_a8/ LA - ru ID - ZVMMF_2015_55_7_a8 ER -
%0 Journal Article %A M. D. Bragin %A B. V. Rogov %T Hybrid running schemes with upwind and bicompact symmetric differencing for hyperbolic equations %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2015 %P 1196-1207 %V 55 %N 7 %U http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_7_a8/ %G ru %F ZVMMF_2015_55_7_a8
M. D. Bragin; B. V. Rogov. Hybrid running schemes with upwind and bicompact symmetric differencing for hyperbolic equations. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 55 (2015) no. 7, pp. 1196-1207. http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_7_a8/
[1] Godunov S. K., “Raznostnyi metod chislennogo rascheta razryvnykh reshenii uravnenii gidrodinamiki”, Matem. sb., 47(89):3 (1959), 271–306 | MR | Zbl
[2] Lax P. D., “Weak solutions of nonlinear hyperbolic equations and their numerical approximation”, Comm. Pure Appl. Math., 7:1 (1954), 159–193 | MR | Zbl
[3] Tolstykh A. I., Kompaktnye raznostnye skhemy i ikh primenenie v zadachakh aerogidrodinamiki, Nauka, M., 1990 | MR
[4] Mikhailovskaya M. N., Rogov B. V., “Monotonnye kompaktnye skhemy beguschego scheta dlya sistem uravnenii giperbolicheskogo tipa”, Zh. vychisl. matem. i matem. fiz., 52:4 (2012), 672–695 | Zbl
[5] Rogov B. V., “Vysokotochnaya monotonnaya kompaktnaya skhema beguschego scheta dlya mnogomernykh uravnenii giperbolicheskogo tipa”, Zh. vychisl. matem. i matem. fiz., 53:2 (2013), 264–274 | Zbl
[6] Rogov B. V., Mikhailovskaya M. N., “O skhodimosti kompaktnykh raznostnykh skhem”, Matem. modelirovanie, 20:1 (2008), 99–116 | MR | Zbl
[7] Lele S. K., “Compact finite difference schemes with spectral-like resolution”, J. Comput. Phys., 103:1 (1992), 16–42 | MR | Zbl
[8] Lax P. D., “Gibbs phenomena”, J. Sci. Computing, 28:2/3 (2006), 445–449 | MR | Zbl
[9] Cockburn B., Shu C.-W., “Nonlinearly stable compact schemes for shock calculations”, SIAM J. Numer. Anal., 31:3 (1994), 607–627 | MR | Zbl
[10] Tolstykh A. I., Shirobokov D. A., “O raznostnykh skhemakh s kompaktnymi approksimatsiyami pyatogo poryadka dlya prostranstvennykh techenii vyazkogo gaza”, Zh. vychisl. matem. i matem. fiz., 36:4 (1996), 71–85 | MR | Zbl
[11] Yee H. C., “Explicit and implicit multidimensional compact high-resolution shock-capturing methods: Formulation”, J. Comput. Phys., 131:1 (1997), 216–232 | Zbl
[12] Ravichandran K. S., “Higher order KFVS algorithms using compact upwind difference operators”, J. Comput. Phys., 130:2 (1997), 161–173 | Zbl
[13] Tolstykh A. I., Lipavskii M. V., “On performance of methods with third- and fifth-order compact upwind differencing”, J. Comput. Phys., 140:2 (1998), 205–232 | MR | Zbl
[14] Ostapenko V. V., “Simmetrichnye kompaktnye skhemy s iskusstvennymi vyazkostyami povyshennogo poryadka divergentnosti”, Zh. vychisl. matem. i matem. fiz., 42:7 (2002), 1019–1038 | MR | Zbl
[15] Cook A. W., Cabot W. H., “A high-wavenumber viscosity for high resolution numerical method”, J. Comput. Phys., 195 (2004), 594–601 | Zbl
[16] Fiorina B., Lele S. K., “An artificial nonlinear diffusivity method for supersonic reacting flows with shocks”, J. Comput. Phys., 222 (2006), 246–264 | MR
[17] Ekaterinaris J. A., “Implicit, high-resolution, compact schemes for gas dynamics and aeroacoustics”, J. Comput. Phys., 156:2 (1999), 272–299 | MR | Zbl
[18] Visbal M. R., Gaitonde D. V., “High order-accurate methods for complex unsteady subsonic flows”, AIAA Journal, 37:10 (1999), 1231–1239
[19] Yee H. C., Sandham N. D., Djomehri M. J., “Low-dissipative high-order shock-capturing methods using characteristic-based filters”, J. Comput. Phys., 150:1 (1999), 199–238 | MR | Zbl
[20] Yee H. C., Sjögreen B., “Adaptive filtering and limiting in compact high order methods for multiscale gas dynamics and MHD systems”, Computers Fluids, 37:5 (2008), 593–619 | MR | Zbl
[21] Bogey C., de Cacqueray N., Bailly C., “A shock-capturing methodology based on adaptive spatial filtering for high-order non-linear computations”, J. Comput. Phys., 228:5 (2009), 1447–1465 | MR | Zbl
[22] Darian H. M., Esfahanian V., Hejranfar K., “A shock-detecting sensor for filtering of high-order compact finite difference schemes”, J. Comput. Phys., 230:3 (2011), 494–514 | MR | Zbl
[23] Adams N. A., Shariff K., “A high-resolution hybrid compact-ENO scheme for shock-turbulence interaction problems”, J. Comput. Phys., 127:1 (1996), 27–51 | MR | Zbl
[24] Pirozzoli S., “Conservative hybrid compact-WENO schemes for shock-turbulence interaction”, J. Comput. Phys., 178:1 (2002), 81–117 | MR | Zbl
[25] Ren Y.-X., Liu M., Zhang H., “A characteristic-wise hybrid compact-WENO scheme for solving hyperbolic conservation laws”, J. Comput. Phys., 192:2 (2003), 365–386 | MR | Zbl
[26] Shen Y., Yang G., “Hybrid finite compact-WENO schemes for shock calculation”, Int. J. Numer. Meth. Fluids, 53:4 (2007), 531–560 | MR | Zbl
[27] Deng X., Maekawa H., “Compact high-order accurate nonlinear schemes”, J. Comput. Phys., 130:1 (1997), 77–91 | MR | Zbl
[28] Deng X., Zhang H., “Developing high-order weighted compact nonlinear schemes”, J. Comput. Phys., 165:1 (2000), 22–44 | MR | Zbl
[29] Jiang L., Shan H., Liu C. Q., “Weighted compact scheme for shock capturing”, Int. J. Comput. Fluid Dyn., 15:2 (2001), 147–155 | MR | Zbl
[30] Zhang S., Jiang S., Shu C.-W., “Development of nonlinear weighted compact schemes with increasingly higher order accuracy”, J. Comput. Phys., 227:15 (2008), 7294–7321 | MR | Zbl
[31] Oliveira M. L., Xie P., Su J., Liu C., Modified weighted compact scheme for shock-boundary layer interaction and double cone, AIAA Paper 2008-755
[32] Ghosh D., Baeder J. D., “Compact reconstruction schemes with weighted ENO limiting for hyperbolic conservation laws”, SIAM J. Sci. Comput., 34:3 (2012), A1678–A1706 | MR | Zbl
[33] Rogov B. V., Mikhailovskaya M. N., “Monotonnye bikompaktnye skhemy dlya lineinogo uravneniya perenosa”, Dokl. AN, 436:5 (2011), 600–605 | Zbl
[34] Kulikovskii A. G., Pogorelov N. V., Semenov A. Yu., Matematicheskie voprosy chislennogo resheniya giperbolicheskikh sistem uravnenii, Fizmatlit, M., 2012
[35] Tolstykh A. I., “O gibridnykh skhemakh s multioperatorami vysokogo poryadka dlya scheta razryvnykh reshenii”, Zh. vychisl. matem. i matem. fiz., 53:9 (2013), 1481–1502 | Zbl
[36] Toro E. F., Riemann solvers and numerical methods for fluid dynamics: a practical introduction, Springer, 2009 | MR | Zbl
[37] Shu C.-W., “Efficient implementation of essentially non-oscillatory shock-capturing schemes”, J. Comput. Phys., 77:2 (1988), 439–471 | MR | Zbl
[38] Gottlieb S., Ketcheson D., Shu C.-W., Strong stability preserving Runge–Kutta and multistep time discretizations, World Scientific, 2011 | MR | Zbl
[39] Fedorenko R. P., “Primenenie raznostnykh skhem vysokoi tochnosti dlya chislennogo resheniya giperbolicheskikh uravnenii”, Zh. vychisl. matem. i matem. fiz., 2:6 (1962), 1122–1128 | MR | Zbl
[40] Chikitkin A. V., Rogov B. V., Utyuzhnikov S. V., “High-order accurate monotone compact running scheme for multidimensional hyperbolic equations”, Applied Numerical Mathematics, 93 (2014), 150–153 | MR
[41] Wornom S. F., “Application of two-point implicit central-difference methods to hyperbolic systems”, Computers Fluids, 20:3 (1991), 321–331 | MR | Zbl
[42] Kholodov A. S., Kholodov Ya. A., “O kriteriyakh monotonnosti raznostnykh skhem dlya uravnenii giperbolicheskogo tipa”, Zh. vychisl. matem. i matem. fiz., 46:9 (2006), 1638–1667 | MR
[43] Khairer E., Vanner G., Reshenie obyknovennykh differentsialnykh uravnenii. Zhestkie i differentsialno-algebraicheskie zadachi, Mir, M., 1999
[44] Shokin Yu. I., Yanenko H. H., Metod differentsialnogo priblizheniya. Primenenie k gazovoi dinamike, Nauka, Novosibirsk, 1985 | MR