Inverse problem of determining the absorption coefficient in the multidimensional heat equation with unlimited minor coefficients
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 55 (2015) no. 7, pp. 1183-1195 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The inverse problem of reconstructing the absorption coefficient (from $L_2$) in the multidimensional heat equation under an additional integral observation condition is studied. It is assumed that the minor coefficients belong to the Lebesgue space. For the solution to the inverse problem, sufficient conditions for existence, uniqueness, and stability to perturbations of input data are established. These conditions are formulated in the form of easy-to-check inequalities.
@article{ZVMMF_2015_55_7_a7,
     author = {T. I. Bukharova and V. L. Kamynin},
     title = {Inverse problem of determining the absorption coefficient in the multidimensional heat equation with unlimited minor coefficients},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1183--1195},
     year = {2015},
     volume = {55},
     number = {7},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_7_a7/}
}
TY  - JOUR
AU  - T. I. Bukharova
AU  - V. L. Kamynin
TI  - Inverse problem of determining the absorption coefficient in the multidimensional heat equation with unlimited minor coefficients
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2015
SP  - 1183
EP  - 1195
VL  - 55
IS  - 7
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_7_a7/
LA  - ru
ID  - ZVMMF_2015_55_7_a7
ER  - 
%0 Journal Article
%A T. I. Bukharova
%A V. L. Kamynin
%T Inverse problem of determining the absorption coefficient in the multidimensional heat equation with unlimited minor coefficients
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2015
%P 1183-1195
%V 55
%N 7
%U http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_7_a7/
%G ru
%F ZVMMF_2015_55_7_a7
T. I. Bukharova; V. L. Kamynin. Inverse problem of determining the absorption coefficient in the multidimensional heat equation with unlimited minor coefficients. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 55 (2015) no. 7, pp. 1183-1195. http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_7_a7/

[1] Prilepko A. I., Orlovskii D. G., “Ob opredelenii parametra evolyutsionnogo uravneniya i obratnykh zadachakh matematicheskoi fiziki, I”, Differents. ur-niya, 21:1 (1985), 119–129 | MR | Zbl

[2] Prilepko A. I., Orlovskii D. G., “Ob opredelenii parametra evolyutsionnogo uravneniya i obratnykh zadachakh matematicheskoi fiziki, II”, Differents. ur-niya, 21:4 (1985), 694–700

[3] Cannon J. R., Lin Y., “Determination of a parameter $p(t)$ in some quasilinear parabolic differential equafions”, Inverse Problems, 4:1 (1988), 35–45 | MR | Zbl

[4] Cannon J. R., Lin Y., “Determination of a parameter in Holder classes for some semilinear parabolic differintial equations”, Inverse Problems, 4:3 (1988), 596–606 | MR

[5] Kamynin V. L., Saroldi M., “Nelineinaya obratnaya zadacha dlya parabolicheskogo uravneniya vysokogo poryadka”, Zh. vychisl. matem. i matem. fiz., 38:10 (1998), 1683–1691 | MR | Zbl

[6] Prilepko A. I., Solovev V. V., “O razreshimosti obratnykh kraevykh zadach opredeleniya koeffitsienta pered mladshei proizvodnoi v parabolicheskom uravnenii”, Differents. ur-niya, 23:1 (1987), 136–143 | MR | Zbl

[7] Prilepko A. I., Kostin A. B., “Ob obratnykh zadachakh opredeleniya koeffitsienta v parabolicheskom uravnenii, I”, Sib. matem. zh., 33:3 (1992), 146–155 | MR | Zbl

[8] Prilepko A. I., Kostin A. B., “Ob obratnykh zadachakh opredeleniya koeffitsienta v parabolicheskom uravnenii, II”, Sib. matem. zh., 34:5 (1993), 147–162 | MR | Zbl

[9] Kamynin V. L., Kostin A. B., “Dve obratnye zadachi opredeleniya koeffitsienta v parabolicheskom uravnenii”, Differents. ur-niya, 46:3 (2010), 372–383 | MR | Zbl

[10] Kamynin V. L., Bukharova T. I., “Obratnaya zadacha opredeleniya koeffitsienta pogloscheniya v parabolicheskom uravnenii na ploskosti”, Vestnik RUDN. Ser. matematika, informatika, fizika, 2011, no. 2, 5–15

[11] Ladyzhenskaya O. A., Solonnikov V. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, Nauka, M., 1967 | MR

[12] Ladyzhenskaya O. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1964 | MR

[13] Lyusternik L. A., Sobolev V. I., Kratkii kurs funktsionalnogo analiza, Vysshaya shkola, M., 1982 | MR