Multigrid method for elliptic equations with anisotropic discontinuous coefficients
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 55 (2015) no. 7, pp. 1168-1182 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For difference elliptic equations, an algorithm based on Fedorenko’s multigrid method is constructed. The algorithm is intended for solving three-dimensional boundary value problems for equations with anisotropic discontinuous coefficients on parallel computers. Numerical results confirming the performance and parallel efficiency of the multigrid algorithm are presented. These qualities are ensured by using, as a multigrid triad, the standard Chebyshev iteration for coarsest grid equations, Chebyshev-type smoothing explicit iterative procedures, and intergrid transfer operators in problem-dependent form.
@article{ZVMMF_2015_55_7_a6,
     author = {V. T. Zhukov and N. D. Novikova and O. B. Feodoritova},
     title = {Multigrid method for elliptic equations with anisotropic discontinuous coefficients},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1168--1182},
     year = {2015},
     volume = {55},
     number = {7},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_7_a6/}
}
TY  - JOUR
AU  - V. T. Zhukov
AU  - N. D. Novikova
AU  - O. B. Feodoritova
TI  - Multigrid method for elliptic equations with anisotropic discontinuous coefficients
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2015
SP  - 1168
EP  - 1182
VL  - 55
IS  - 7
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_7_a6/
LA  - ru
ID  - ZVMMF_2015_55_7_a6
ER  - 
%0 Journal Article
%A V. T. Zhukov
%A N. D. Novikova
%A O. B. Feodoritova
%T Multigrid method for elliptic equations with anisotropic discontinuous coefficients
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2015
%P 1168-1182
%V 55
%N 7
%U http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_7_a6/
%G ru
%F ZVMMF_2015_55_7_a6
V. T. Zhukov; N. D. Novikova; O. B. Feodoritova. Multigrid method for elliptic equations with anisotropic discontinuous coefficients. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 55 (2015) no. 7, pp. 1168-1182. http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_7_a6/

[1] Fedorenko R. P., “Relaksatsionnyi metod resheniya raznostnykh ellipticheskikh uravnenii”, Zh. vychisl. matem. i matem. fiz., 1:5 (1961), 922–927 | MR | Zbl

[2] Fedorenko R. P., “Iteratsionnye metody resheniya raznostnykh ellipticheskikh uravnenii”, Uspekhi matem. nauk, XXVIII:2(170) (1973), 129–195 | Zbl

[3] Fedorenko R. P., Vvedenie v vychislitelnuyu fiziku, MFTI, M., 1994

[4] Zhukov V. T., Novikova N. D., Feodoritova O. B., “Parallelnyi mnogosetochnyi metod dlya raznostnykh ellipticheskikh uravnenii. Ch. I: Osnovnye elementy algoritma”, Prepr. IPM im. M. V. Keldysha, 2012, 030 http://library.keldysh.ru/preprint.asp?id=2012-30

[5] Zhukov V. T., Novikova N. D., Feodoritova O. B., “Parallelnyi mnogosetochnyi metod dlya raznostnykh ellipticheskikh uravnenii. Anizotropnye zadachi”, Prepr. IPM im. M. V. Keldysha, 2012, 076 http://library.keldysh.ru/preprint.asp?id=2012-76

[6] Zhukov V. T., Novikova N. D., Feodoritova O. B., “O mnogosetochnom i yavno-iteratsionnom metodakh dlya parabolicheskikh uravnenii”, Prepr. IPM im. M. V. Keldysha, 2014, 028 http://library.keldysh.ru/preprint.asp?id=2014-28 | Zbl

[7] Zhukov V. T., Novikova N. D., Feodoritova O. B., “Parallelnyi mnogosetochnyi metod dlya raznostnykh ellipticheskikh uravnenii”, Matem. modelirovanie, 26:1 (2014), 55–68 | Zbl

[8] Zhukov V. T., Novikova N. D., Feodoritova O. B., “Mnogosetochnyi metod dlya anizotropnykh uravnenii diffuzii na osnove adaptatsii chebyshevskikh sglazhivatelei”, Matem. modelirovanie, 26:9 (2014), 126–140 | Zbl

[9] Zhukov V. T., Feodoritova O. B., Yang D. P., “Iteratsionnye algoritmy dlya skhem konechnykh elementov vysokogo poryadka”, Matem. modelirovanie, 16:7 (2004), 117–128 | Zbl

[10] Zhukov V. T., Feodoritova O. B., “Mnogosetochnyi metod dlya konechno-elementnykh diskretizatsii uravnenii aerodinamiki”, Matem. modelirovanie, 23:1 (2011), 115–131 | Zbl

[11] Samarskii A. A., Tikhonov A. N., “Ob odnorodnykh raznostnykh skhemakh”, Zh. vychisl. matem. i matem. fiz., 1:1 (1961), 5–63 | MR | Zbl

[12] Gantmakher F. R., Teoriya matrits, Nauka, M., 1966 | MR

[13] Trottenberg U., Oosterlee C. W., Schuller A., Multigrid, Academic Press, 2001 | MR | Zbl

[14] Samarskii A. A., Nikolaev E. S., Metody resheniya setochnykh uravnenii, Nauka, M., 1978 | MR

[15] Zhukov V. T., “O yavnykh metodakh chislennogo integrirovaniya dlya parabolicheskikh uravnenii”, Matem. modelirovanie, 22:10 (2010), 127–158 | MR | Zbl

[16] Lokutsievskii V. O., Lokutsievskii O. V., “O chislennom reshenii kraevykh zadach dlya uravnenii parabolicheskogo tipa”, Dokl. AN SSSR, 291:3 (1986), 540–544 | MR