Blue sky catastrophe as applied to modeling of cardiac rhythms
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 55 (2015) no. 7, pp. 1136-1155 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A new mathematical model for the electrical activity of the heart is proposed. The model represents a special singularly perturbed three-dimensional system of ordinary differential equations with one fast and two slow variables. A characteristic feature of the system is that its solution performs nonclassical relaxation oscillations and simultaneously undergoes a blue sky catastrophe bifurcation. Both these factors make it possible to achieve a phenomenological proximity between the time dependence of the fast component in the model and an ECG of the human heart.
@article{ZVMMF_2015_55_7_a4,
     author = {S. D. Glyzin and A. Yu. Kolesov and N. Kh. Rozov},
     title = {Blue sky catastrophe as applied to modeling of cardiac rhythms},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1136--1155},
     year = {2015},
     volume = {55},
     number = {7},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_7_a4/}
}
TY  - JOUR
AU  - S. D. Glyzin
AU  - A. Yu. Kolesov
AU  - N. Kh. Rozov
TI  - Blue sky catastrophe as applied to modeling of cardiac rhythms
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2015
SP  - 1136
EP  - 1155
VL  - 55
IS  - 7
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_7_a4/
LA  - ru
ID  - ZVMMF_2015_55_7_a4
ER  - 
%0 Journal Article
%A S. D. Glyzin
%A A. Yu. Kolesov
%A N. Kh. Rozov
%T Blue sky catastrophe as applied to modeling of cardiac rhythms
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2015
%P 1136-1155
%V 55
%N 7
%U http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_7_a4/
%G ru
%F ZVMMF_2015_55_7_a4
S. D. Glyzin; A. Yu. Kolesov; N. Kh. Rozov. Blue sky catastrophe as applied to modeling of cardiac rhythms. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 55 (2015) no. 7, pp. 1136-1155. http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_7_a4/

[1] Turaev D. V., Shilnikov L. P., “O katastrofakh golubogo neba”, Dokl. AN, 342:5 (1995), 596–599 | MR | Zbl

[2] Shilnikov A., Shilnikov L., Turaev D., Blue sky catastrophe in singularly-perturbed systems, Preprint WIAS, No 841, Berlin, 2003 | MR

[3] Shilnikov A., Shilnikov L., Turaev D., “Blue-sky catastrophe in singularly perturbed systems”, Moscow Math. J., 5:1 (2005), 269–282 | MR | Zbl

[4] Glyzin S. D., Kolesov A. Yu., Rozov N. Kh., “Katastrofa golubogo neba v relaksatsionnykh sistemakh s odnoi bystroi i dvumya medlennymi peremennymi”, Differents. ur-niya, 44:2 (2008), 158–171 | MR | Zbl

[5] Mischenko E. F., Rozov N. Kh., Differentsialnye uravneniya s malym parametrom i relaksatsionnye kolebaniya, Nauka, M., 1975 | MR

[6] Mischenko E. F., Kolesov Yu. S., Kolesov A. Yu., Rozov N. Kh., Periodicheskie dvizheniya i bifurkatsionnye protsessy v singulyarno vozmuschennykh sistemakh, Fizmatlit, M., 1995 | MR

[7] Anosov D. V., “O predelnykh tsiklakh sistem differentsialnykh uravnenii s malym parametrom pri starshikh proizvodnykh”, Matem. sb., 50:3 (1960), 299–334 | MR | Zbl

[8] Strygin V. V., Sobolev V. A., Razdelenie dvizhenii metodom integralnykh mnogoobrazii, Nauka, M., 1988 | MR

[9] Glyzin S. D., Kolesov A. Yu., Rozov N. Kh., “Razdelenie dvizhenii v okrestnosti poluustoichivogo tsikla”, Differents. ur-niya, 43:5 (2007), 598–615 | MR | Zbl

[10] Shilnikov L. P., Shilnikov A. L., Turaev D. V., Chua L., Metody kachestvennoi teorii nelineinykh sistem, v. 1, In-t kompyuternykh issledovanii, M.–Izhevsk, 2004

[11] Kolesov A. Yu., Rozov N. Kh., Invariantnye tory nelineinykh volnovykh uravnenii, Fizmatlit, M., 2004

[12] McSharry P. E., Clifford G. D., Tarassenko L., Smith L. A., “A dynamical model for generating synthetic electrocardiogram signals”, IEEE Trans. Biomed. Engng., 50:3 (2003), 289–294 | MR

[13] Kazakov D. V., “Kvaziperiodicheskaya dvukhkomponentnaya dinamicheskaya model dlya sinteza kardiosignala s ispolzovaniem vremennykh ryadov i metoda Runge–Kutty chetvertogo poryadka”, Kompyuternye issledovaniya i modelirovanie, 4:1 (2012), 143–154 | MR

[14] Zeeman E. C., “Differential equations for the heartbeat and nerve impulse”, Towards a Theoretical Biology, 4 (1972), 8–67 | MR

[15] Janson N. B., Pavlov A. N., Anishenko V. S., “One method for restoring inhomogeneous attractors”, J. of Bifurcation and Chaos, 8:4 (1998), 825–833 | MR | Zbl

[16] Podziemski P., Zebrowski J. J., “A simple model of the right atrium of the human heart with the sinoatrial and atrioventricular nodes includeds”, J. Clin. Monit. Comput., 27 (2013), 481–498

[17] Suchorsky M., Rand R., “Three oscillator model of the heartbeat generator”, Commun. Nonlinear Sci. Numer. Simulat., 14 (2009), 2434–2449 | MR | Zbl

[18] dos Santos A. M., Lopes S. R., Viana R. L., “Rhythm synchronization and chaotic modulation of coupled Van der Pol oscillators in a model for the heartbeat”, Physica A, 338 (2004), 335–355 | MR

[19] Babloyantz A., Destexhe A., Is the normal heart a periodic oscillator?, Biol. Cybern., 58 (1998), 203–211 | MR