Nearly optimal coverings of a sphere with generalized spherical segments
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 55 (2015) no. 7, pp. 1125-1135 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The subject of this study is the incomplete covering of a two-dimensional sphere by sets resulting from the intersection of this sphere with a cone whose vertex is inside the sphere. A numerical method is proposed for evaluating the criterial function of the covering, which is representable in the form of a multiple minimax. The problem of optimally choosing the axes for the cones defining the sets in the covering is examined. By exploiting symmetry considerations, this problem is reduced to a similar problem of small dimension, which can be numerically treated on modern computers. The reduction is performed by solving an auxiliary optimization problem. It is shown that the criterial function of this problem is Lipschitzian. The results of several numerical tests are presented. For possible computer implementations of the proposed methods, certain recommendations on parallelizing some numerical procedures are given.
@article{ZVMMF_2015_55_7_a3,
     author = {A. M. Dulliev},
     title = {Nearly optimal coverings of a sphere with generalized spherical segments},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1125--1135},
     year = {2015},
     volume = {55},
     number = {7},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_7_a3/}
}
TY  - JOUR
AU  - A. M. Dulliev
TI  - Nearly optimal coverings of a sphere with generalized spherical segments
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2015
SP  - 1125
EP  - 1135
VL  - 55
IS  - 7
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_7_a3/
LA  - ru
ID  - ZVMMF_2015_55_7_a3
ER  - 
%0 Journal Article
%A A. M. Dulliev
%T Nearly optimal coverings of a sphere with generalized spherical segments
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2015
%P 1125-1135
%V 55
%N 7
%U http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_7_a3/
%G ru
%F ZVMMF_2015_55_7_a3
A. M. Dulliev. Nearly optimal coverings of a sphere with generalized spherical segments. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 55 (2015) no. 7, pp. 1125-1135. http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_7_a3/

[1] Galiev Sh. I., Karpova M. A., “Optimizatsiya mnogokratnogo pokrytiya ogranichennogo mnozhestva krugami”, Zh. vychisl. matem. i matem. fiz., 50:4 (2010), 757–769 | MR | Zbl

[2] Galiev Sh. I., Karpova M. A., “Mnogokratnye pokrytiya kvadrata krugami. I; II”, Vestnik KGTU im. A. N. Tupoleva, 2013, no. 1, 86–93; No 2, 88–92

[3] Galiev Sh. I., “Mnogokratnye upakovki i pokrytiya sfery”, Sibirskii matem. zh., 30:3 (1989), 202–203

[4] Mozhaev G. V., Sintez orbitalnykh struktur sputnikovykh sistem, Mashinostroenie, M., 1989

[5] Dulliev A. M., “Relaksatsionnyi metod minimizatsii gladkoi funktsii na obobschennom segmente sfery”, Zh. vychisl. matem. i matem. fiz., 54:2 (2014), 208–223 | MR | Zbl

[6] Böröczky K. (Jr.), Finite packing and covering, Cambridge University Press, Cambridge, 2004 | MR | Zbl

[7] Piyavskii S. A., “Odin algoritm otyskaniya absolyutnogo ekstremuma funktsii”, Zh. vychisl. matem. i matem. fiz., 12:4 (1972), 888–896

[8] Nesterov Yu. E., Vvedenie v vypukluyu optimizatsiyu, MTsNMO, M., 2010

[9] Polyak B. T., Vvedenie v optimizatsiyu, Nauka, M., 1983 | MR

[10] Demyanov V. F., Malozemov V. N., Vvedenie v minimaks, Nauka, M., 1972 | MR

[11] Evtushenko Yu. G., Malkova V. U., Stanevichyus A. A., “Rasparallelivanie protsessa poiska globalnogo ekstremuma”, Avtomatika i telemekhan., 2007, no. 5, 46–58 | MR | Zbl