On integration contour deformation in a Laplace transform inversion formula
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 55 (2015) no. 7, pp. 1118-1124 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Laplace transform inversion formulas are proposed that rely on integration contour deformation in the Riemann–Mellin inversion formula followed by applying quadrature formulas and deriving error estimates.
@article{ZVMMF_2015_55_7_a2,
     author = {A. V. Lebedeva and V. M. Ryabov},
     title = {On integration contour deformation in a {Laplace} transform inversion formula},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1118--1124},
     year = {2015},
     volume = {55},
     number = {7},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_7_a2/}
}
TY  - JOUR
AU  - A. V. Lebedeva
AU  - V. M. Ryabov
TI  - On integration contour deformation in a Laplace transform inversion formula
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2015
SP  - 1118
EP  - 1124
VL  - 55
IS  - 7
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_7_a2/
LA  - ru
ID  - ZVMMF_2015_55_7_a2
ER  - 
%0 Journal Article
%A A. V. Lebedeva
%A V. M. Ryabov
%T On integration contour deformation in a Laplace transform inversion formula
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2015
%P 1118-1124
%V 55
%N 7
%U http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_7_a2/
%G ru
%F ZVMMF_2015_55_7_a2
A. V. Lebedeva; V. M. Ryabov. On integration contour deformation in a Laplace transform inversion formula. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 55 (2015) no. 7, pp. 1118-1124. http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_7_a2/

[1] Ditkin V. A., Prudnikov A. P., Integralnye preobrazovaniya i operatsionnoe ischislenie, M., 1961

[2] Krylov V. I., Skoblya N. S., Metody priblizhennogo preobrazovaniya Fure i obrascheniya preobrazovaniya Laplasa, M., 1974

[3] Poroshina N. I., Ryabov V. M., “O metodakh obrascheniya preobrazovaniya Laplasa”, Vestn. S.-Peterb. un-ta. Ser. 1, 2011, no. 3, 55–64 | MR

[4] Cohen A. M., Numerical methods for Laplace transform inversion, Berlin, 2007 | MR

[5] Ryabov V. M., Chislennoe obraschenie preobrazovaniya Laplasa, SPb., 2013

[6] Widder D. V., The Laplace transform, Princeton, 1946

[7] Dech G., Rukovodstvo k prakticheskomu primeneniyu preobrazovaniya Laplasa i $Z$-preobrazovaniya, M., 1971

[8] Lavrentev M. A., Shabat B. V., Metody teorii funktsii kompleksnogo peremennogo, M., 2002

[9] Lure A. I., Operatsionnoe ischislenie i ego prilozhenie k zadacham mekhaniki, M.–L., 1951

[10] Slepyan L. I., Yakovlev Yu. S., Integralnye preobrazovaniya v nestatsionarnykh zadachakh mekhaniki, L., 1980 | MR

[11] Talbot A., “The accurate numerical inversion of Laplace transform”, J. Inst. Maths. Applies, 23 (1979), 97–120 | MR | Zbl

[12] Ryabov V. M., “Ob odnom sposobe obrascheniya preobrazovaniya Laplasa”, Kubaturnye formuly i ikh prilozheniya, Materialy X mezhdunarodnogo seminara-soveschaniya (Ulan-Ude, 2009), 130–137

[13] Samokish B. A., “Zamechanie o vychislenii opredelennykh integralov”, Metody vychislenii, 2, L., 1963, 45–49 | MR

[14] Weideman J. A. C., Trefethen L. N., “Parabolic and hyperbolic contours for computing the Bromwich integral”, Math. Comput., 76:259 (2007), 1341–1356 | MR | Zbl

[15] Bakhvalov N. S., Vasileva L. G., “Vychislenie integralov ot ostsilliruyuschikh funktsii pri pomoschi interpolyatsii po uzlam kvadratur Gaussa”, Zh. vychisl. matem. i matem. fiz., 8:1 (1968), 175–181

[16] Krylov V. I., Priblizhennoe vychislenie integralov, Nauka, M., 1967 | MR

[17] Stroud A. H., Secrest D., Gaussian quadrature formulas, N.-Y., 1966 | MR

[18] Vasileva L. G., Zhileikin Ya. M., “O bystrom vychislenii uzlov i vesov kvadratury Gaussa”, Zh. vychisl. matem. i matem. fiz., 44:3 (2004), 426–431 | MR | Zbl