Evolution of disturbances on the surface of an elastic plate in supersonic gas flow
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 55 (2015) no. 7, pp. 1221-1237 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The evolution of two-dimensional disturbances on the surface of an infinite elastic plate placed in a supersonic inviscid gas flow is studied in the linear approximation. The initial disturbances are assumed to be localized within a bounded spatial domain. The problem is solved by applying an asymptotic method for estimating parameter-dependent integrals, namely, the saddle point method. The evolution of disturbances is analyzed without making any simplifications of the dispersion equation: the dependence of the oscillation frequency on the wave vector is used in implicit form. For various governing parameters of the problem, the amplification characteristics of disturbances and wave numbers are qualitatively analyzed depending on the group velocity. A particular problem is considered, specifically, the conditions under which the plate is absolutely unstable are found. The results are compared with those obtained earlier in the low free-stream density approximation.
@article{ZVMMF_2015_55_7_a10,
     author = {D. S. Shaposhnikov},
     title = {Evolution of disturbances on the surface of an elastic plate in supersonic gas flow},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1221--1237},
     year = {2015},
     volume = {55},
     number = {7},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_7_a10/}
}
TY  - JOUR
AU  - D. S. Shaposhnikov
TI  - Evolution of disturbances on the surface of an elastic plate in supersonic gas flow
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2015
SP  - 1221
EP  - 1237
VL  - 55
IS  - 7
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_7_a10/
LA  - ru
ID  - ZVMMF_2015_55_7_a10
ER  - 
%0 Journal Article
%A D. S. Shaposhnikov
%T Evolution of disturbances on the surface of an elastic plate in supersonic gas flow
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2015
%P 1221-1237
%V 55
%N 7
%U http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_7_a10/
%G ru
%F ZVMMF_2015_55_7_a10
D. S. Shaposhnikov. Evolution of disturbances on the surface of an elastic plate in supersonic gas flow. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 55 (2015) no. 7, pp. 1221-1237. http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_7_a10/

[1] Ilyushin A. A., “Zakon ploskikh sechenii v aerodinamike bolshikh sverkhzvukovykh skorostei”, Prikl. matem. i mekhan., 20:6 (1956), 733–755 | MR

[2] Movchan A. A., “O kolebaniyakh plastinki, dvizhuscheisya v gaze”, Prikl. matem. i mekhan., 20:2 (1956), 211–222 | MR | Zbl

[3] Algazin S. D., Kiiko I. A., Flatter plastin i obolochek, Nauka, M., 2006

[4] Miles J. W., “On the aerodynamic instability of thin plates”, J. Aeronautical Sci., 23:8 (1956), 771–780 | MR | Zbl

[5] Vedeneev V. V., “Neustoichivost bezgranichnoi uprugoi plastiny, obtekaemoi potokom gaza”, Izv. RAN. Mekhan. zhidk. i gaza, 2004, no. 4, 19–27

[6] Landau L. D., Lifshits E. M., Teoreticheskaya fizika, v. 6, Gidrodinamika, Nauka, M., 1986 | MR

[7] Fedoryuk M. V., Metod perevala, Nauka, M., 1977 | MR

[8] Briggs R. J., Electron-stream interaction with plasmas, MIT, Cambridge, Mass., 1964

[9] Kupfer K., Bers A., Ram A. K., “The cusp map in the complex-frequency plane for absolute instabilities”, Phys. Fluids, 30 (1987), 3075–3079 | MR

[10] Suslov S. A., “Numerical aspects of searching convective/absolute instability transition”, J. Comput. Phys., 212 (2006), 188–217 | MR | Zbl

[11] Savenkov I. V., “Osobennosti lineinoi stadii razvitiya trekhmernykh volnovykh paketov v ploskom techenii Puazeilya”, Zh. vychisl. matem. i matem. fiz., 49:7 (2009), 1271–1279 | MR | Zbl

[12] Vedeneev V. V., “Flatter plastiny, imeyuschei formu shirokoi polosy, v sverkhzvukovom potoke gaza”, Izv. RAN. Mekhan. zhidk. i gaza, 2005, no. 5, 155–169 | MR

[13] Hall L., Heckrotte W., “Instabilities: convective versus absolute”, Phys. Rev., 166 (1968), 120–128

[14] Kulikovskii A. G., Shikina I. S., “O razvitii vozmuschenii na granitse razdela dvukh zhidkostei”, Izv. AN SSSR. Mekhan. zhidk. i gaza, 1977, no. 5, 46–49

[15] Savenkov I. V., “Osobennosti volnovykh paketov v ploskom techenii Puazeilya–Kuetta”, Zh. vychisl. matem. i matem. fiz., 48:7 (2008), 1274–1281 | MR

[16] Brevdo L., Laure P., Dias F., Bridges T., “Linear pulse structure and signalling in a film flow on an inclined plane”, J. Fluid Mech., 396 (1999), 37–71 | MR | Zbl