Approximation of functions by two-point Hermite interpolating polynomials
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 55 (2015) no. 7, pp. 1091-1108
Cet article a éte moissonné depuis la source Math-Net.Ru
A polynomial approximating a given function is constructed assuming that the function and a certain set of its derivatives are known at the endpoints of a given interval. Various analytical formulas are derived for the approximating polynomial. An interpretation of the two-point approximation of the function is given and its relation to the Taylor series expansion of the function is indicated. A sufficient condition for the convergence of a sequence of two-point polynomials to a given function is established. Examples are given in which the sine function is approximated by a sequence of two-point Hermite polynomials on given intervals. The errors in the two-point and Taylor series approximations of the function are compared analytically and numerically.
@article{ZVMMF_2015_55_7_a0,
author = {V. V. Shustov},
title = {Approximation of functions by two-point {Hermite} interpolating polynomials},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1091--1108},
year = {2015},
volume = {55},
number = {7},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_7_a0/}
}
TY - JOUR AU - V. V. Shustov TI - Approximation of functions by two-point Hermite interpolating polynomials JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2015 SP - 1091 EP - 1108 VL - 55 IS - 7 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_7_a0/ LA - ru ID - ZVMMF_2015_55_7_a0 ER -
V. V. Shustov. Approximation of functions by two-point Hermite interpolating polynomials. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 55 (2015) no. 7, pp. 1091-1108. http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_7_a0/
[1] Kudryavtsev L. D., Matematicheskii analiz, v. 1, Vysshaya shkola, M., 1970
[2] Berezin I. S., Zhidkov N. P., Metody vychislenii, v. 1, Fizmatlit, M., 1962 | MR
[3] Kozhukhov I. B., Prokofev A. A., Spravochnik po matematike, “List”, M., 1999
[4] Goncharov V. L., Teoriya interpolirovaniya i priblizheniya funktsii, Gostekhteorizdat, M., 1934
[5] Prasolov V. V., Mnogochleny, MTsNMO, M., 1999
[6] Volkov E. A., Chislennye metody, Uchebnoe posobie dlya vuzov, Fizmatlit, M., 1987
[7] Mysovskikh I. P., Lektsii po metodam vychislenii, Fizmatgiz, M., 1962
[8] Matematika i SAPR, v. 1, Mir, M., 1988