Approximation of functions by two-point Hermite interpolating polynomials
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 55 (2015) no. 7, pp. 1091-1108 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A polynomial approximating a given function is constructed assuming that the function and a certain set of its derivatives are known at the endpoints of a given interval. Various analytical formulas are derived for the approximating polynomial. An interpretation of the two-point approximation of the function is given and its relation to the Taylor series expansion of the function is indicated. A sufficient condition for the convergence of a sequence of two-point polynomials to a given function is established. Examples are given in which the sine function is approximated by a sequence of two-point Hermite polynomials on given intervals. The errors in the two-point and Taylor series approximations of the function are compared analytically and numerically.
@article{ZVMMF_2015_55_7_a0,
     author = {V. V. Shustov},
     title = {Approximation of functions by two-point {Hermite} interpolating polynomials},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1091--1108},
     year = {2015},
     volume = {55},
     number = {7},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_7_a0/}
}
TY  - JOUR
AU  - V. V. Shustov
TI  - Approximation of functions by two-point Hermite interpolating polynomials
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2015
SP  - 1091
EP  - 1108
VL  - 55
IS  - 7
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_7_a0/
LA  - ru
ID  - ZVMMF_2015_55_7_a0
ER  - 
%0 Journal Article
%A V. V. Shustov
%T Approximation of functions by two-point Hermite interpolating polynomials
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2015
%P 1091-1108
%V 55
%N 7
%U http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_7_a0/
%G ru
%F ZVMMF_2015_55_7_a0
V. V. Shustov. Approximation of functions by two-point Hermite interpolating polynomials. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 55 (2015) no. 7, pp. 1091-1108. http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_7_a0/

[1] Kudryavtsev L. D., Matematicheskii analiz, v. 1, Vysshaya shkola, M., 1970

[2] Berezin I. S., Zhidkov N. P., Metody vychislenii, v. 1, Fizmatlit, M., 1962 | MR

[3] Kozhukhov I. B., Prokofev A. A., Spravochnik po matematike, “List”, M., 1999

[4] Goncharov V. L., Teoriya interpolirovaniya i priblizheniya funktsii, Gostekhteorizdat, M., 1934

[5] Prasolov V. V., Mnogochleny, MTsNMO, M., 1999

[6] Volkov E. A., Chislennye metody, Uchebnoe posobie dlya vuzov, Fizmatlit, M., 1987

[7] Mysovskikh I. P., Lektsii po metodam vychislenii, Fizmatgiz, M., 1962

[8] Matematika i SAPR, v. 1, Mir, M., 1988