Computational identification of the right-hand side of a parabolic equation
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 55 (2015) no. 6, pp. 1020-1027 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Among inverse problems for partial differential equations, a task of interest is to study coefficient inverse problems related to identifying the right-hand side of an equation with the use of additional information. In the case of nonstationary problems, finding the dependence of the right-hand side on time and the dependence of the right-hand side on spatial variables can be treated as independent tasks. These inverse problems are linear, which considerably simplifies their study. The time dependence of the right-hand side of a multidimensional parabolic equation is determined using an additional solution value at a point of the computational domain. The inverse problem for a model equation in a rectangle is solved numerically using standard spatial difference approximations. The numerical algorithm relies on a special decomposition of the solution whereby the transition to a new time level is implemented by solving two standard grid elliptic problems. Numerical results are presented.
@article{ZVMMF_2015_55_6_a9,
     author = {P. N. Vabishchevich and V. l. Vasil'ev and M. V. Vasil'eva},
     title = {Computational identification of the right-hand side of a parabolic equation},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1020--1027},
     year = {2015},
     volume = {55},
     number = {6},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_6_a9/}
}
TY  - JOUR
AU  - P. N. Vabishchevich
AU  - V. l. Vasil'ev
AU  - M. V. Vasil'eva
TI  - Computational identification of the right-hand side of a parabolic equation
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2015
SP  - 1020
EP  - 1027
VL  - 55
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_6_a9/
LA  - ru
ID  - ZVMMF_2015_55_6_a9
ER  - 
%0 Journal Article
%A P. N. Vabishchevich
%A V. l. Vasil'ev
%A M. V. Vasil'eva
%T Computational identification of the right-hand side of a parabolic equation
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2015
%P 1020-1027
%V 55
%N 6
%U http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_6_a9/
%G ru
%F ZVMMF_2015_55_6_a9
P. N. Vabishchevich; V. l. Vasil'ev; M. V. Vasil'eva. Computational identification of the right-hand side of a parabolic equation. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 55 (2015) no. 6, pp. 1020-1027. http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_6_a9/

[1] Alifanov O. M., Inverse heat transfer problems, Springer, Berlin, 2011

[2] Aster R. C., Parameter estimation and inverse problems, Elsevier Science, London, 2011

[3] Lavrent'ev M. M., Romanov V. G., Shishatskii S. P., Ill-posed problems of mathematical physics and analysis, American Mathematical Society, 1986 | MR | Zbl

[4] Isakov V., Inverse problems for partial differential equations, Springer, Berlin, 1998 | MR | Zbl

[5] Prilepko A. I., Orlovsky D. G., Vasin I. A., Methods for solving inverse problems in mathematical physics, Marcel Dekker, Berlin, 2000 | MR | Zbl

[6] Vogel C. R., Computational methods for inverse problems, Society for Industrial and Applied Mathematics, USA, 2002 | MR | Zbl

[7] Samarskii A. A., Vabishchevich P. N., Numerical methods for solving inverse problems of mathematical physics, De Gruyter, 2007 | MR | Zbl

[8] Borukhov V. T., Vabishchevich P. N., “Numerical solution of the inverse problem of reconstructing a distributed right-hand side of a parabolic equation”, Comput. Phys. Commun., 126:1 (2000), 32–36 | MR | Zbl

[9] Samarskii A. A., The theory of difference schemes, Marcel Dekker, Berlin, 2001 | MR | Zbl

[10] Samarskii A. A., Nikolaev E. S., Numerical methods for grid equations, v. I, II, Birkhauser Verlag, Berlin, 1989