@article{ZVMMF_2015_55_6_a6,
author = {H. Mesgarani and R. Mollapourasl and A. Ostadi},
title = {Numerical approach for solving neutral differential equation with deviating argument},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {985},
year = {2015},
volume = {55},
number = {6},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_6_a6/}
}
TY - JOUR AU - H. Mesgarani AU - R. Mollapourasl AU - A. Ostadi TI - Numerical approach for solving neutral differential equation with deviating argument JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2015 SP - 985 VL - 55 IS - 6 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_6_a6/ LA - en ID - ZVMMF_2015_55_6_a6 ER -
%0 Journal Article %A H. Mesgarani %A R. Mollapourasl %A A. Ostadi %T Numerical approach for solving neutral differential equation with deviating argument %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2015 %P 985 %V 55 %N 6 %U http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_6_a6/ %G en %F ZVMMF_2015_55_6_a6
H. Mesgarani; R. Mollapourasl; A. Ostadi. Numerical approach for solving neutral differential equation with deviating argument. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 55 (2015) no. 6. http://geodesic.mathdoc.fr/item/ZVMMF_2015_55_6_a6/
[1] N. V. Azbelev, V. P. Maksimov, L. F. Rakhmatullina, Introduction to Theory of Functional-Differential Equations, Nauka, M., 1990 | MR
[2] J. Banas, “Applications of measures of noncompactness to various problems”, Zesz. Nauk. Polit. Rzeszow., Mat. Fiz. z., 5:34 (1987) | MR | Zbl
[3] C. Corduneanu, Integral Equations and Applications, Cambridge Univ. Press, Cambridge, 1991 | MR | Zbl
[4] K. Deimling, Nonlinear Functional Analysis, Springer-Verlag, Berlin, 1985 | MR | Zbl
[5] R. D. Driver, Ordinary and Delay Differential Equations, Springer-Verlag, Berlin, 1977 | MR | Zbl
[6] J. Hale, S. M. Veiduyn Lunel, Introduction to Functional Differential Equations, Springer-Verlag, New York, 1993 | MR | Zbl
[7] G. A. Kamenski, “On the general theory of equations with deviating argument”, Dokl. Akad. Nauk SSSR, 120 (1958), 697–700 | MR | Zbl
[8] V. Kolmanovskii, A. Myshkis, Introduction to the Theory and Applications of Functional Differential Equations, Kluwer Academic, Dordrecht, 1999 | MR | Zbl
[9] Y. Kuong, Delay Differential Equations with Applications in Population Dynamics, Academic, Boston, 1993 | MR
[10] M. Zima, Positive Operators in Banach Spaces and Their Applications, Wyd. Uniw. Rzeszowskiego, Rzeszow, 2005 | MR | Zbl
[11] J. Banas, I. J. Cabrerab, “On solutions of a neutral differential equation with deviating argument”, Math. Comput. Model., 44 (2006), 1080–1088 | MR | Zbl
[12] K. Maleknejad, E. Najafi, “Numerical solution of nonlinear Volterra integral equations using the idea of quasilinearization”, Commun. Nonlinear Sci. Numer. Simul., 16:1 (2011), 93–100 | MR | Zbl
[13] K. Atkinson, W. Han, Theoretical Numerical Analysis: A Functional Analysis Framework, Springer, New York, 2007
[14] K. Atkinson, The Numerical Solution of Integral Equations of the Second Kind, Cambridge Univ. Press, Cambridge, 1997 | MR | Zbl
[15] A. H. Borzabadi, O. S. Fard, “Numerical scheme for a class of nonlinear Fredholm integral equations of the second kind”, J. Comput. Appl. Math., 232 (2009), 449–454 | MR | Zbl
[16] C. T. Kelley, “Approximation of solutions of some quadratic integral equations in transport theory”, J. Integral Equations, 4 (1982), 221–237 | MR | Zbl
[17] R. Kress, Linear Integral Equations, Springer, Berlin, 1989 | MR | Zbl
[18] A. Sommariva, “A fast Nyström–Broyden solver by Chebyshev compression”, Numer. Algorithms, 38 (2005), 47–60 | MR | Zbl
[19] E. Zeidler, Nonlinear Functional Analysis and Its Applications, v. 1, Fixed Point Theorems, Springer-Verlag, Berlin, 1986 | MR | Zbl
[20] K. Maleknejad, K. Nedaiasl, “Application of sinc-collocation method for solving a class of nonlinear Fredholm integral equations”, Comput. Math. Appl., 62:8 (2011), 3292–3303 | MR | Zbl
[21] L. Brutman, “An application of the generalized alternating polynomials to the numerical solution of Fredholm integral equations”, Numer. Algorithms, 5 (1993), 437–442 | MR | Zbl
[22] W. Petryshyn, “Projection methods in nonlinear numerical functional analysis”, J. Math. Mech., 17 (1967), 353–372 | MR | Zbl
[23] H. R. Marzban, H. R. Tabrizidooz, M. Razzaghi, “A composite collocation method for the nonlinear mixed Volterra–Fredholm–Hammerstein integral equations”, Commun Nonlinear Sci. Numer Simul., 16:3 (2011), 1186–1194 | MR | Zbl
[24] K. Maleknejad, M. Nosrati Sahlan, “The method of moments for solution of second kind Fredholm integral equations based on B-spline wavelets”, Int. J. Comput. Math., 87:7 (2010), 1602–1616 | MR | Zbl
[25] G. Q. Han, “Extrapolation of a discrete collocation-type method of Hammerstein equations”, J. Comput. Appl. Math., 61 (1995), 73–86 | MR | Zbl
[26] G. Q. Han, L. Zhang, “Asymptotic error expansion of a collocation-type method for Hammerstein equations”, Appl. Math. Comput., 72 (1995), 1–19 | MR | Zbl
[27] H. Kaneko, R. D. Noren, P. A. Padilla, “Superconvergence of the iterated collocation methods for Hammerstein equations”, J. Comput. Appl. Math., 80 (1997), 335–349 | MR | Zbl
[28] K. Maleknejad, H. Almasieh, M. Roodaki, “Triangular functions (TF) method for the solution of nonlinear Volterra–Fredholm integral equations”, Commun. Nonlinear Sci. Numer. Simul., 15 (2010), 3293–3298 | MR | Zbl
[29] S. Kumar, I. Sloan, “A new collocation-type method for Hammerstein equations”, Math. Comput., 48 (1987), 585–593 | MR | Zbl
[30] K. Maleknejad, M. Karami, M. Rabbani, “Using the Petrov–Galerkin elements for solving Hammerstein integral equations”, Appl. Math. Comput., 172:2 (2006), 831–845 | MR | Zbl
[31] K. Maleknejad, M. Karami, “Numerical solution of nonlinear Fredholm integral equations by using multiwavelets in the Petrov–Galerkin method”, Appl. Math. Comput., 168 (2005), 102–110 | MR | Zbl
[32] W. Petryshyn, “Projection methods in nonlinear numerical functional analysis”, J. Math. Mech., 17 (1967), 353–372 | MR | Zbl
[33] C. Allouch, P. Sablonniere, D. Sbibih, “Solving Fredholm integral equations by approximating kernels by spline quasi-interpolants”, Numer. Algorithms, 56:3 (2011), 437–453 | MR | Zbl
[34] G. Micula, S. Micula, Handbook of Splines, Kluwer Academic, Dordrecht, 1999 | MR | Zbl
[35] F. De Hoog, R. Weiss, “Asymptotic expansions for product integration”, Math. Comput., 27 (1973), 295–306 | MR | Zbl
[36] S. Abbasbandy, E. Shivanian, “A new analytical technique to solve Fredholm integral equations”, Numer. Algorithms, 56:1 (2011), 27–43 | MR | Zbl
[37] S. Abbasbandy, “Numerical solutions of the integral equations: Homotopy perturbation method and Adomian's decomposition method”, Appl. Math. Comput., 173 (2006), 493–500 | MR | Zbl
[38] E. Babolian, J. Biazar, A. R. Vahidi, “The decomposition method applied to systems of Fredholm integral equations of the second kind”, Appl. Math. Comput., 148 (2004), 443–452 | MR | Zbl
[39] A. H. Borzabadi, A. V. Kamyad, H. H. Mehne, “A different approach for solving the nonlinear Fredholm integral equations of the second kind”, Appl. Math. Comput., 173 (2006), 724–735 | MR | Zbl
[40] C. T. Kelley, “A fast two-grid method for matrix H-equations”, Trans. Theory Stat. Phys., 18 (1989), 185–204 | MR
[41] K. Atkinson, “Iterative variants of the Nyström method for the numerical solution of integral equations”, Numer. Math., 22 (1973), 17–31 | MR | Zbl
[42] K. Atkinson, “The numerical evaluation of fixed points for completely continuous operators”, SIAM J. Numer. Anal., 10 (1973), 799–807 | MR | Zbl
[43] G. Q. Han, “Asymptotic expansion for the Nyström method for nonlinear Fredholm integral equations of the second kind”, BIT Numer. Math., 34 (1994), 254–262 | MR
[44] G. Mastroiani, G. Monegato, “Some new applications of truncated Gauss–Laguerre quadrature formulas”, Numer. Algorithms, 49 (2008), 283–297 | MR
[45] O. Hübner, “The Newton method for solving the Theodorsen integral equation”, J. Comput. Appl. Math., 14 (1986), 19–30 | MR | Zbl
[46] C. T. Kelley, J. Northrup, “A pointwise quasi-Newton method for integral equations”, SIAM J. Numer. Anal., 25 (1988), 1138–1155 | MR | Zbl
[47] C. T. Kelley, E. Sachs, “Broyden's method for approximate solution of nonlinear integral equations”, J. Integral Equations, 9 (1985), 25–43 | MR | Zbl
[48] M. Shimasaki, T. Kiyono, “Numerical solution of integral equations by Chebyshev series”, Numer. Math., 21 (1973), 373–380 | MR | Zbl
[49] E. Babolian, S. Abbasbandy, F. Fattahzadeh, “A numerical method for solving a class of functional and two dimensional integral equations”, Appl. Math. Comput., 198 (2008), 35–43 | MR | Zbl
[50] S. Abbasbandy, “Application of He's homotopy perturbation method to functional integral equations”, Chaos Solitons Fractals, 31 (2007), 1243–1247 | MR | Zbl
[51] M. T. Rashed, “Numerical solution of functional differential, integral and integro-differential equations”, Appl. Math. Comput., 156 (2004), 485–492 | MR | Zbl
[52] M. T. Rashed, “Numerical solution of functional integral equations”, Appl. Math. Comput., 156 (2004), 507–512 | MR | Zbl
[53] F. Stenger, Numerical Methods Based on Sine and Analytic Functions, Springer-Verlag, New York, 1993 | MR
[54] J. Lund, K. Bowers, Sine Methods for Quadrature and Differential Equations, SIAM, Philadelphia, 1992 | MR
[55] X. Wu, Kong W. Li, “A sinc-collocation method with boundary treatment for two-dimensional elliptic boundary value problems”, J. Comput. Appl. Math., 196:2 (2006), 58–69 | MR | Zbl
[56] M. S. Sababheh, A. M. N. Al-Khaled, “Some convergence results on sine interpolation”, J. Inequal. Pure Appl. Math., 4 (2003), 32–48 | MR
[57] H. Takahasi, M. Mori, “Double exponential formulas for numerical integration”, Publ. RIMS Kyoto Univ., 9, 1974, 721–741 | MR | Zbl
[58] M. Mori, “Quadrature formulas obtained by variable transformation and the DE-rule”, J. Comput. Appl. Math., 12–13 (1985), 119–130 | MR | Zbl
[59] M. Mori, “Developments in the double exponential formulas for numerical integration”, Proceedings of the International Congress of Mathematicians (August 21–29, 1990, Kyoto), ed. I. Satake, Springer, Berlin, 1991, 1585–1594 | MR
[60] J. Banas, K. Goebel, Measures of noncompactness in Banach space, Lecture Notes in Pure and Applied Mathematics, 60, Dekker, New York, 1980 | MR
[61] J. Banas, “Measures of noncompactness in the space of continuous tempered functions”, Demonstratio Math., 14 (1981), 127–133 | MR | Zbl
[62] K. Tanaka, M. Sugihara, K. Murota, “Function classes for successful DE-sinc approximations”, Math. Comput., 78 (2009), 1553–1571 | MR | Zbl
[63] K. Tanaka, M. Sugihara, K. Murota, M. Mori, “Function classes for double exponential integration formulas”, Numer. Math., 111 (2009), 631–655 | MR | Zbl